- 2021-07-01 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020高中数学 第三章空间向量及其运算
3.1 空间向量及其运算 3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算 学习目标:1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点) [自 主 预 习·探 新 知] 1.空间向量 (1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:向量的大小. (3)表示方法: ①几何表示法:空间向量用有向线段表示; ②字母表示法:用字母a,b,c,…表示;若向量a的起点是A,终点是B,也可记作:,其模记为|a|或||. 2.几类常见的空间向量 名称 方向 模 记法 零向量 任意 0 0 单位向量 任意 1 相反向量 相反 相等 a的相反向量:-a 的相反向量: 相等向量 相同 相等 a=b 3.向量的加法、减法 空间向量的运算 加法 =+=a+b 减法 =-=a-b 加法运算律 (1)交换律:a+b=b+a (2)结合律:(a+b)+c=a+(b+c) 4.空间向量的数乘运算 (1)定义:实数λ与空间向量a的乘积λa仍然是一个向量,称为向量的数乘运算.当λ>0时,λa与向量a方向相同;当λ<0时,λa与向量a方向相反;当λ=0时,λa=0;λa的长度是a的长度的|λ|倍. 13 (2)运算律:①λ(a+b)=λa+λb;②λ(μa)=(λμ)a. 5.共线向量和共面向量 (1)共线向量 ①定义:表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. ②共线向量定理:对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ使a=λb. ③点P在直线AB上的充要条件:存在实数t,使=+t. (2)共面向量 ①定义:平行于同一个平面的向量叫做共面向量. ②共面向量定理:若两个向量a,b不共线,则向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b. ③空间一点P位于平面ABC内的充要条件:存在有序实数对(x,y), 使=x+y或对空间任意一点O,有=+x+y. 思考:(1)空间中任意两个向量一定是共面向量吗? (2)若空间任意一点O和不共线的三点A,B,C,满足=++,则点P与点A,B,C是否共面? [提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量. (2)由=++得-=(-)+(-) 即=+,因此点P与点A,B,C共面. [基础自测] 1.思考辨析 (1)共线向量一定是共面向量,但共面向量不一定是共线向量.( ) (2)若表示两向量的有向线段所在的直线为异面直线,则这两个向量不是共面向量.( ) (3)如果=+t,则P,A,B共线.( ) (4)空间中任意三个向量一定是共面向量.( ) [答案] (1)√ (2)× (3)√ (4)× 2.已知空间四边形ABCD中,=a,=b,=c,则=( ) 13 A.a+b-c B.-a-b+c C.-a+b+c D.-a+b-c C [=++=-+=-a+b+C.] 3.在三棱锥ABCD中,若△BCD是正三角形,E为其中心,则+--化简的结果为________. 0 [延长DE交边BC于点F,则有+=,+=+=,故+--=0.] [合 作 探 究·攻 重 难] 空间向量的有关概念 (1)给出下列命题: ①若|a|=|b|,则a=b或a=-b ②若向量a是向量b的相反向量,则|a|=|b| ③在正方体ABCDA1B1C1D1中,= ④若空间向量m,n,p满足m=n,n=p,则m=p. 其中正确命题的序号是________. (2)如图311所示,在平行六面体ABCDA′B′C′D′中,顶点连接的向量中,与向量相等的向量有________;与向量相反的向量有________.(要求写出所有适合条件的向量) 图311 [解析] (1)对于①,向量a与b的方向不一定相同或相反,故①错; 对于②,根据相反向量的定义知|a|=|b|,故②正确; 13 对于③,根据相等向量的定义知,=,故③正确; 对于④,根据相等向量的定义知正确. [答案] ②③④ (2)根据相等向量的定义知,与向量相等的向量有,,.与向量相反的向量有,,,. [答案] ,, ,,, [规律方法] 解答空间向量有关概念问题的关键点及注意点 (1)关键点:紧紧抓住向量的两个要素,即大小和方向. (2)注意点:注意一些特殊向量的特性. ①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性。 ②单位向量方向虽然不一定相同,但它们的长度都是1. ③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. [跟踪训练] 1.如图312所示,以长方体ABCDA1B1C1D1的八个顶点的两点为始点和终点的向量中, 图312 (1)试写出与相等的所有向量; (2)试写出的相反向量; (3)若AB=AD=2,AA1=1,求向量的模. 【导学号:46342130】 [解] (1)与向量相等的向量有,,,,共3个; (2)向量的相反向量为,,,,共4个; (3)||2=22+22+12=9,所以||=3. 13 空间向量的线性运算 (1)如图313所示,在正方体ABCDA1B1C1D1中,下列各式中运算结果为向量的有( ) 图313 ①(+)+;②(+)+; ③(+)+;④(+)+. A.1个 B.2个 C.3个 D.4个 (2)如图314所示,在平行六面体ABCDA1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量: 图314 ①; ②; ③+. [思路探究] (1)根据向量的三角形法则和平行四边形法则求解. (2)根据数乘向量及三角形法则,平行四边形法则求解. [解析] (1)对于①,(+)+=+=, 对于②,(+)+=+=, 对于③,(+)+=+=, 对于④,(+)+=+=. [答案] D 13 (2)①=++=++=a+c+b, ②=++=-++=-a+b+c, ③+=++++ =a+c+b+c+a=a+b+c. [规律方法] 1.空间向量加法、减法运算的两个技巧 (1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接. (2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果. 2.利用数乘运算进行向量表示的技巧 (1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量. (2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质. [跟踪训练] 2.如图315,已知空间四边形OABC,M,N分别是边OA,BC的中点,点G在MN上,且MG=2GN,设=a,=b,=c,试用a,b,c表示向量. 图315 [解] =+ =+ =+(++) =+ =+ =++=a+b+C. 13 共线问题 (1)设e1,e2是空间两个不共线的向量,已知=e1+ke2,=5e1+4e2,=-e1-2e2,且A,B,D三点共线,实数k=________. (2)如图316正方体ABCDA1B1C1D1中,O为A1C上一点,且A1O=,BD与AC交于点M.求证:C1,O,M三点共线. 图316 [思路探究] (1)根据向量共线的充要条件求解. (2)用向量,,分别表示和. [解析] (1)=++=(e1+ke2)+(5e1+4e2)+(e1+2e2)=7e1+(k+6)e2 设=λ,则7e1+(k+6)e2=λ(e1+ke2) 所以,解得k=1 [答案] 1 (2)设=a,=b,=c, 则=+=+=(+)+(+) =++(++) =+--+=++ =a+b+c, =+=+=(+)+, =a+b+c, ∴=3,又直线MC1与直线MO有公共点M, 13 ∴C1,O,M三点共线. [规律方法] 1.判断向量共线的策略 (1)熟记共线向量的充要条件:①若a∥b,b≠0,则存在惟一实数λ使a=λb;②若存在惟一实数λ,使a=λb,b≠0,则a∥b. (2)判断向量共线的关键:找到实数λ. 2.证明空间三点共线的三种思路 对于空间三点P,A,B可通过证明下列结论来证明三点共线. (1)存在实数λ,使=λ成立. (2)对空间任一点O,有=+t(t∈R). (3)对空间任一点O,有=x+y(x+y=1). [跟踪训练] 3.(1)已知向量a,b,且=a+2b,=-5a+6b,=7a-2b,则一定共线的三点是( ) 【导学号:46342131】 A.A,B,D B.A,B,C C.B,C,D D.A,C,D A [=++=(a+2b)+(-5a+6b)+(7a-2b)=3a+6b 所以=3. 又直线AB,AD有公共点A,故A、B、D三点共线.] (2)如图317,在正方体ABCDA1B1C1D1中,E在A1D1上,且=2,F在对角线A1C上,且=. 图317 求证:E,F,B三点共线. [证明] 设=a,=b,=c, 13 因为=2,=, 所以=,=, 所以==b, =(-)=(+-)=a+b-c,所以=-=a-b-c=. 又=++=-b-c+a=a-b-c,所以=,所以E,F,B三点共线. 向量共面问题 [探究问题] 1.能说明P,A,B,C四点共面的结论有哪些? 提示:(1)存在有序实数对(x,y),使得=x+y. (2)空间一点P在平面ABC内的充要条件是存在有序实数组(x,y,z)使得=x+y+z(其中x+y+z=1). (3)∥. 2.已知向量a,b,c不共面,且p=3a+2b+c,m=a-b+c,n=a+b-c,试判断p,m,n是否共面. 提示:设p=xm+yn,即3a+2b+c=x(a-b+c)+y(a+b-c)=(x+y)a+(-x+y)b+(x-y)C. 因为a,b,c不共面,所以 而此方程组无解,所以p不能用m,n表示, 即p,m,n不共面. 如图318所示,已知矩形ABCD和矩形ADEF所在的平面互相垂直,点M,N分别在对角线BD,AE上,且BM=BD,AN=AE. 13 图318 求证:向量,,共面. [思路探究] 可通过证明=x+y求证. [证明] 因为M在BD上,且BM=BD,所以==+.同理=+. 所以=++ =++ =+=+. 又与不共线,根据向量共面的充要条件可知,,共面. [规律方法] 1.利用四点共面求参数 向量共面的充要条件的实质是共面的四点中所形成的两个不共线的向量一定可以表示其他向量,对于向量共面的充要条件,不仅会正用,也要能够逆用它求参数的值. 2.证明空间向量共面或四点共面的方法 (1)向量表示:设法证明其中一个向量可以表示成另两个向量的线性组合,即若p=xa+yb,则向量p,a,b共面. (2)若存在有序实数组(x,y,z)使得对于空间任一点O,有=x+y+z,且x+y+z=1成立,则P,A,B,C四点共面. (3)用平面:寻找一个平面,设法证明这些向量与该平面平行. [跟踪训练] 4.已知A,B,C三点不共线,点O是平面ABC外的任意一点,若点P分别满足下列关系: (1)+2=6-3; (2)+=4-. 试判断点P是否与点A,B,C共面. [解] 法一 (1)∵3-3=+2-3=(-)+(2-2), 13 ∴3=+2,即=-2-3. 根据共面向量定理的推论知:P与点A,B,C共面. (2)设=+x+y(x,y∈R),则 +x+y+=4-, ∴+x(-)+y(-)+=4-, ∴(1-x-y-4)+(1+x)+(1+y)=0, 由题意知,,均为非零向量,所以x,y满足: 显然此方程组无解,故点P与点A,B,C不共面. 法二 (1)由题意,=++, ∵++=1,∴点P与点A,B,C共面. (2)∵=4--,而4-1-1=2≠1, ∴点P与点A,B,C不共面. [当 堂 达 标·固 双 基] 1.空间四边形ABCD中,M,G分别是BC,CD的中点,则-+=( ) A.2 B.3 C.3 D.2 B [-+=+=+2=3.] 2.在下列条件中,使M与A,B,C一定共面的是( ) 【导学号:46342132】 A.=2-- B.=++ C.++=0 D.+++=0 C [由MA+MB+MC=0得=--,故M,A,B,C四点共面.] 13 3.如图319,已知正方体ABCDA1B1C1D1中,点E是上底面A1C1的中点,若=x+y+z,x+y+z=________. 图319 2 [∵=+=+=+=+(+)=++, ∴x=,y=,z=1, ∴x+y+z=2.] 4.已知O是空间任意一点,A,B,C,D四点满足任意三点不共线,但四点共面,且=2x+3y+4z,则2x+3y+4z=________. -1 [由=2x+3y+4z得=-2x-3y-4z 所以-2x-3y-4z=1,即2x+3y+4z=-1.] 5.如图3110,在空间四边形ABCD中,G为△BCD的重心,E,F分别为边CD和AD的中点,试化简+-,并在图中标出化简结果的向量. 【导学号:46342133】 图3110 [解] ∵G是△BCD的重心,BE是CD边上的中线, ∴=. 13 又=(-) =-=-=, ∴+- =+-=(如图所示). 13查看更多