【数学】2020届数学文一轮复习第三章第4讲利用导数证明不等式作业
1.(2019·安徽模拟)已知f(x)=,则( )
A.f(2)>f(e)>f(3) B.f(3)>f(e)>f(2)
C.f(3)>f(2)>f(e) D.f(e)>f(3)>f(2)
解析:选D.f(x)的定义域是(0,+∞),f′(x)=,令f′(x)=0,得x=e.
所以当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,故x=e时,f(x)max=f(e)=,而f(2)==,f(3)==,所以f(e)>f(3)>f(2).故选D.
2.若0
ln x2-ln x1 B.ex2-ex1x1e x2 D.x2ex1x1 ex2,故选C.
3.(2018·高考全国卷Ⅲ)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,-1)处的切线方程;
(2)证明:当a≥1时, f(x)+e≥0.
解:(1)f′(x)=,f′(0)=2.
因此曲线y=f(x)在(0,-1)处的切线方程是2x-y-1=0.
(2)证明:当a≥1时,f(x)+e≥(x2+x-1+ex+1)e-x.
令g(x)=x2+x-1+ex+1,则g′(x)=2x+1+ex+1.
当x<-1时,g′(x)<0,g(x)单调递减;当x>-1时,g′(x)>0,g(x)单调递增;所以g(x)≥g(-1)=0.
因此f(x)+e≥0.
4.(2019·石家庄模拟)已知函数f(x)=ex-3x+3a(e为自然对数的底数,a∈R).
(1)求f(x)的单调区间与极值;
(2)求证:当a>ln ,且x>0时,>x+-3a.
解:(1)由f(x)=ex-3x+3a,x∈R,知f′(x)=ex-3,x∈R.
令f′(x)=0,得x=ln 3,
于是当x变化时,f′(x),f(x)的变化情况如下表:
x
(-∞,ln 3)
ln 3
(ln 3,+∞)
f′(x)
-
0
+
f(x)
3(1-ln 3+a)
故f(x)的单调递减区间是(-∞,ln 3],
单调递增区间是[ln 3,+∞),
f(x)在x=ln 3处取得极小值,极小值为f(ln 3)=eln 3-3ln 3+3a=3(1-ln 3+a).无极大值.
(2)证明:待证不等式等价于ex>x2-3ax+1,
设g(x)=ex-x2+3ax-1,x>0,
于是g′(x)=ex-3x+3a,x>0.
由(1)及a>ln =ln 3-1知:g′(x)的最小值为g′(ln 3)=3(1-ln 3+a)>0.
于是对任意x>0,都有g′(x)>0,所以g(x)在(0,+∞)内单调递增.
于是当a>ln =ln 3-1时,对任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.
即ex>x2-3ax+1,故>x+-3a.
5.(2019·贵州适应性考试)已知函数f(x)=xln x+ax,a∈R,函数f(x)的图象在x=1处的切线与直线x+2y-1=0垂直.
(1)求a的值和函数f(x)的单调区间;
(2)求证:ex>f′(x).
解:(1)由题易知,f′(x)=ln x+1+a,x>0,且f(x)的图象在x=1处的切线的斜率k=2,
所以f′(1)=ln 1+1+a=2,所以a=1.
所以f′(x)=ln x+2,
当x>e-2时,f′(x)>0,
当00,
因为g′(x)=ex-在(0,+∞)上单调递增,
且g′(1)=e-1>0,g′()=e-2<0,
所以g′(x)在(,1)上存在唯一的零点t,
使得g′(t)=et-=0,即et=(t时,g′(x)>g′(t)=0,
所以g(x)在(0,t)上单调递减,在(t,+∞)上单调递增,
所以x>0时,g(x)≥g(t)=et-ln t-2=-ln -2=t+-2≥2-2=0,
又0,即ex>f′(x).
6.已知函数f(x)=aln x+,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.
(1)求a,b的值;
(2)当x>0且x≠1时,求证:f(x)>.
解:(1)函数f(x)=aln x+的导数为f′(x)=-,
曲线y=f(x)在点(1,f(1))处的切线方程为y=2,
可得f(1)=2b=2,f′(1)=a-b=0,
解得a=b=1.
(2)证明:当x>1时,f(x)>,
即为ln x+1+>ln x+,
即x--2ln x>0,
当0,
即为x--2ln x<0,
设g(x)=x--2ln x,g′(x)=1+-=≥0,
可得g(x)在(0,+∞)上递增,
当x>1时,g(x)>g(1)=0,
即有f(x)>,
当0.
综上可得,当x>0且x≠1时,f(x)>都成立.