- 2021-06-30 发布 |
- 37.5 KB |
- 26页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2014年全国统一高考数学试卷(理科)(新课标ⅰ)
2014年全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题(共12小题,每小题5分) 1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=( ) A.[1,2) B.[﹣1,1] C.[﹣1,2) D.[﹣2,﹣1] 2.(5分)=( ) A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i 3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( ) A.f(x)•g(x)是偶函数 B.|f(x)|•g(x)是奇函数 C.f(x)•|g(x)|是奇函数 D.|f(x)•g(x)|是奇函数 4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( ) A. B.3 C.m D.3m 5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A. B. C. D. 6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( ) A. B. C. D. 7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( ) A. B. C. D. 8.(5分)设α∈(0,),β∈(0,),且tanα=,则( ) A.3α﹣β= B.3α+β= C.2α﹣β= D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题: p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2 p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1 其中真命题是( ) A.p2,p3 B.p1,p4 C.p1,p2 D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( ) A. B.3 C. D.2 11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( ) A.(1,+∞) B.(2,+∞) C.(﹣∞,﹣1) D.(﹣∞,﹣2) 12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 B.6 C.4 D.4 二、填空题(共4小题,每小题5分) 13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为 .(用数字填写答案) 14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市; 乙说:我没去过C城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为 . 15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为 . 16.(5分)已知a,b,c分别为△ ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为 . 三、解答题 17.(12分)已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数. (Ⅰ)证明:an+2﹣an=λ (Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由. 18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图: (Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表); (Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2. (i)利用该正态分布,求P(187.8<Z<212.2); (ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX. 附:≈12.2. 若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544. 19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (Ⅰ)证明:AC=AB1; (Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值. 20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点. (Ⅰ)求E的方程; (Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程. 21.(12分)设函数f(x)=aexlnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2. (Ⅰ)求a、b; (Ⅱ)证明:f(x)>1. 选修4-1:几何证明选讲 22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE. (Ⅰ)证明:∠D=∠E; (Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形. 选修4-4:坐标系与参数方程 23.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. 选修4-5:不等式选讲 24.若a>0,b>0,且+=. (Ⅰ)求a3+b3的最小值; (Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由. 2014年全国统一高考数学试卷(理科)(新课标Ⅰ) 参考答案与试题解析 一、选择题(共12小题,每小题5分) 1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=( ) A.[1,2) B.[﹣1,1] C.[﹣1,2) D.[﹣2,﹣1] 【分析】求出A中不等式的解集确定出A,找出A与B的交集即可. 【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0, 解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞), ∵B=[﹣2,2), ∴A∩B=[﹣2,﹣1]. 故选:D. 【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.(5分)=( ) A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i 【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果. 【解答】解:==﹣(1+i)=﹣1﹣i, 故选:D. 【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题. 3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( ) A.f(x)•g(x)是偶函数 B.|f(x)|•g(x)是奇函数 C.f(x)•|g(x)|是奇函数 D.|f(x)•g(x)|是奇函数 【分析】根据函数奇偶性的性质即可得到结论. 【解答】解:∵f(x)是奇函数,g(x)是偶函数, ∴f(﹣x)=﹣f(x),g(﹣x)=g(x), f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误, |f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误, f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确. |f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误, 故选:C. 【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键. 4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( ) A. B.3 C.m D.3m 【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论. 【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为, ∴一个焦点为(,0),一条渐近线方程为=0, ∴点F到C的一条渐近线的距离为=. 故选:A. 【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题. 5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A. B. C. D. 【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可. 【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况, 周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况, ∴所求概率为=. 故选:D. 【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数. 6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为( ) A. B. C. D. 【分析】 在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择. 【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|, ∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx| =|cosx|•|sinx|=|sin2x|, 其周期为T=,最大值为,最小值为0, 故选:C. 【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用. 7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( ) A. B. C. D. 【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值. 【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2; 第二次循环M=2+=,a=,b=,n=3; 第三次循环M=+=,a=,b=,n=4. 不满足条件n≤3,跳出循环体,输出M=. 故选:D. 【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法. 8.(5分)设α∈(0,),β∈(0,),且tanα=,则( ) A.3α﹣β= B.3α+β= C.2α﹣β= D.2α+β= 【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求. 【解答】解:由tanα=,得: , 即sinαcosβ=cosαsinβ+cosα, sin(α﹣β)=cosα=sin(), ∵α∈(0,),β∈(0,), ∴当时,sin(α﹣β)=sin()=cosα成立. 故选:C. 【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题. 9.(5分)不等式组的解集记为D,有下列四个命题: p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2 p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1 其中真命题是( ) A.p2,p3 B.p1,p4 C.p1,p2 D.p1,p3 【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可. 【解答】解:作出图形如下: 由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域, p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立; p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确; p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y≤3错误; p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误; 综上所述,p1、p2正确; 故选:C. 【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题. 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=( ) A. B.3 C. D.2 【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求. 【解答】解:设Q到l的距离为d,则|QF|=d, ∵=4, ∴|PQ|=3d, ∴不妨设直线PF的斜率为﹣=﹣2, ∵F(2,0), ∴直线PF的方程为y=﹣2(x﹣2), 与y2=8x联立可得x=1, ∴|QF|=d=1+2=3, 故选:B. 【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题. 11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( ) A.(1,+∞) B.(2,+∞) C.(﹣∞,﹣1) D.(﹣∞,﹣2) 【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可. 【解答】解:∵f(x)=ax3﹣3x2+1, ∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1; ①当a=0时,f(x)=﹣3x2+1有两个零点,不成立; ②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立; ③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点; 故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点; 而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值; 故f()=﹣3•+1>0; 故a<﹣2; 综上所述, 实数a的取值范围是(﹣∞,﹣2); 故选:D. 【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题. 12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 B.6 C.4 D.4 【分析】画出图形,结合三视图的数据求出棱长,推出结果即可. 【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4, ∴.AC==6,AD=4, 显然AC最长.长为6. 故选:B. 【点评】本题考查三视图求解几何体的棱长,考查计算能力. 二、填空题(共4小题,每小题5分) 13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为 ﹣20 .(用数字填写答案) 【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可. 【解答】解:(x+y)8的展开式中,含xy7的系数是:8. 含x2y6的系数是28, ∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20. 故答案为:﹣20 【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. 14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时, 甲说:我去过的城市比乙多,但没去过B城市; 乙说:我没去过C城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为 A . 【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论. 【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市, 但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个, 再由丙说:我们三人去过同一城市, 则由此可判断乙去过的城市为A. 故答案为:A. 【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题. 15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为 90° . 【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论. 【解答】解:在圆中若=(+), 即2=+, 即+的和向量是过A,O的直径, 则以AB,AC为邻边的四边形是矩形, 则⊥, 即与的夹角为90°, 故答案为:90° 【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础. 16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为 . 【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解. 【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC ⇒(2+b)(a﹣b)=(c﹣b)c ⇒2a﹣b2=c2﹣bc, 又因为:a=2, 所以:, △ABC面积, 而b2+c2﹣a2=bc ⇒b2+c2﹣bc=a2 ⇒b2+c2﹣bc=4 ⇒bc≤4 所以:,即△ABC面积的最大值为. 故答案为:. 【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题. 三、解答题 17.(12分)已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn﹣1,其中λ为常数. (Ⅰ)证明:an+2﹣an=λ (Ⅱ)是否存在λ,使得{an}为等差数列?并说明理由. 【分析】(Ⅰ)利用anan+1=λSn﹣1,an+1an+2=λSn+1﹣1,相减即可得出; (Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{an}为等差数列,设公差为d.可得λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d,.得到λSn=,根据{an}为等差数列的充要条件是,解得λ即可. 【解答】(Ⅰ)证明:∵anan+1=λSn﹣1,an+1an+2=λSn+1﹣1, ∴an+1(an+2﹣an)=λan+1 ∵an+1≠0, ∴an+2﹣an=λ. (Ⅱ)解:①当λ=0时,anan+1=﹣1,假设{an}为等差数列,设公差为d. 则an+2﹣an=0,∴2d=0,解得d=0, ∴an=an+1=1, ∴12=﹣1,矛盾,因此λ=0时{an}不为等差数列. ②当λ≠0时,假设存在λ,使得{an}为等差数列,设公差为d. 则λ=an+2﹣an=(an+2﹣an+1)+(an+1﹣an)=2d, ∴. ∴,, ∴λSn=1+=, 根据{an}为等差数列的充要条件是,解得λ=4. 此时可得,an=2n﹣1. 因此存在λ=4,使得{an}为等差数列. 【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题. 18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图: (Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表); (Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2. (i)利用该正态分布,求P(187.8<Z<212.2); (ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX. 附:≈12.2. 若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544. 【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出; (Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据; (ii)由(i)知X~B(100,0.6826),运用EX=np即可求得. 【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为: =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150. (Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826; (ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26. 【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力. 19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C. (Ⅰ)证明:AC=AB1; (Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值. 【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1; (2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值. 【解答】解:(1)连结BC1,交B1C于点O,连结AO, ∵侧面BB1C1C为菱形, ∴BC1⊥B1C,且O为BC1和B1C的中点, 又∵AB⊥B1C,∴B1C⊥平面ABO, ∵AO⊂平面ABO,∴B1C⊥AO, 又B10=CO,∴AC=AB1, (2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO, 又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB, ∴OA,OB,OB1两两垂直, 以O为坐标原点,的方向为x轴的正方向,||为单位长度, 的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系, ∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC, ∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0) ∴=(0,,),==(1,0,),==(﹣1,,0), 设向量=(x,y,z)是平面AA1B1的法向量, 则,可取=(1,,), 同理可得平面A1B1C1的一个法向量=(1,﹣,), ∴cos<,>==, ∴二面角A﹣A1B1﹣C1的余弦值为 【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题. 20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点. (Ⅰ)求E的方程; (Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程. 【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程; (Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程. 【解答】解:(Ⅰ) 设F(c,0),由条件知,得=又, 所以a=2=,b2=a2﹣c2=1,故E的方程.….(5分) (Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2) 将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0, 当△=16(4k2﹣3)>0,即时, 从而=+ 又点O到直线PQ的距离,所以△OPQ的面积=, 设,则t>0,, 当且仅当t=2,k=±等号成立,且满足△>0, 所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分) 【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力. 21.(12分)设函数f(x)=aexlnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2. (Ⅰ)求a、b; (Ⅱ)证明:f(x)>1. 【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可; (Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max; 【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞), f′(x)=+, 由题意可得f(1)=2,f′(1)=e, 故a=1,b=2; (Ⅱ)由(Ⅰ)知,f(x)=exlnx+, ∵f(x)>1,∴exlnx+>1,∴lnx>﹣, ∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx, ∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0. 故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣. 设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x). ∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0, 故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 从而h(x)在(0,+∞)上的最大值为h(1)=﹣. 综上,当x>0时,g(x)>h(x),即f(x)>1. 【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力. 选修4-1:几何证明选讲 22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE. (Ⅰ)证明:∠D=∠E; (Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形. 【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E; (Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠ A=∠E,即可证明△ADE为等边三角形. 【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形, ∴∠D=∠CBE, ∵CB=CE, ∴∠E=∠CBE, ∴∠D=∠E; (Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC, ∴O在直线MN上, ∵AD不是⊙O的直径,AD的中点为M, ∴OM⊥AD, ∴AD∥BC, ∴∠A=∠CBE, ∵∠CBE=∠E, ∴∠A=∠E, 由(Ⅰ)知,∠D=∠E, ∴△ADE为等边三角形. 【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题. 选修4-4:坐标系与参数方程 23.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA| 的最大值与最小值. 【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以 sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值. 【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ, 故曲线C的参数方程为,(θ为参数). 对于直线l:, 由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0; (Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ). P到直线l的距离为. 则,其中α为锐角. 当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为. 当sin(θ+α)=1时,|PA|取得最小值,最小值为. 【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题. 选修4-5:不等式选讲 24.若a>0,b>0,且+=. (Ⅰ)求a3+b3的最小值; (Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由. 【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值. (Ⅱ)根据 ab≥2及基本不等式求的2a+3b> 8,从而可得不存在a,b,使得2a+3b=6. 【解答】解:(Ⅰ)∵a>0,b>0,且+=, ∴=+≥2,∴ab≥2, 当且仅当a=b=时取等号. ∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号, ∴a3+b3的最小值为4. (Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号. 而由(1)可知,2≥2=4>6, 故不存在a,b,使得2a+3b=6成立. 【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题. 查看更多