- 2021-06-24 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2013年高考数学四川卷(文)
2013年普通高等学校招生全国统一考试(四川卷) 数 学(文史类) 第Ⅰ卷(选择题 共50分) 一、选择题: 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合,集合,则( ) (A) (B) (C) (D) 2.一个几何体的三视图如图所示,则该几何体可以是( ) (A)棱柱 (B)棱台 (C)圆柱 (D)圆台 3.如图,在复平面内,点表示复数,则图中表示的共轭复数的点是( ) (A) (B) (C) (D) 4.设,集合是奇数集,集合是偶数集.若命题,则( ) (A) (B) (C) (D) 5.抛物线的焦点到直线的距离是( ) (A) (B) (C) (D) 6.函数的部分图象如图所示,则的值分别是( ) (A) (B) (C) (D) 7.某学校随机抽取个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为将数据分组成,,…,,时,所作的频率分布直方图是( ) 8.若变量满足约束条件且的最大值为,最小值为,则的值是( ) (A) (B) (C) (D) 9.从椭圆上一点向轴作垂线,垂足恰为左焦点,是椭圆与轴正半轴的交点,是椭圆与轴正半轴的交点,且(是坐标原点),则该椭圆的离心率是( ) (A) (B) (C) (D) 10.设函数(,为自然对数的底数).若存在使成立,则的取值范围是( ) (A) (B) (C) (D) 第Ⅱ卷 (非选择题 共100分) 二、填空题:本大题共5小题,每小题4分,共25分. 11.的值是____ _. 12.如图,在平行四边形中,对角线与交于点,,则___ __ _. 13.已知函数在时取得最小值,则___ ___. 14.设,,则的值是________. 15.在平面直角坐标系内,到点,,,的距离之和最小的点的坐标是 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等比数列中,,且为和的等差中项,求数列的首项、公比及前项和. 17.(本小题满分12分) 在中,角的对边分别为,且 . (Ⅰ)求的值; (Ⅱ)若,,求向量在方向上的投影. 18.(本小题满分12分) 某算法的程序框图如图所示,其中输入的变量在这个整数中等可能随机产生. (Ⅰ)分别求出按程序框图正确编程运行时输出的值为的概率; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行次后,统计记录了输出的值为的频数.以下是甲、乙所作频数统计表的部分数据. 当时,根据表中的数据,分别写出甲、乙所编程序各自输出的值为的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大. 19.(本小题满分12分) 如图,在三棱柱中,侧棱底面,,,分别是线段的中点,是线段上异于端点的点. (Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面; (Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积.(锥体体积公式:,其中为底面面积,为高) 20.(本小题满分13分) 已知圆的方程为,点是坐标原点.直线与圆交于 两点. (Ⅰ)求的取值范围; (Ⅱ)设是线段上的点,且.请将表示为的函数. 21.(本小题满分14分) 已知函数,其中是实数.设,为该函数图象上的两点,且. (Ⅰ)指出函数的单调区间; (Ⅱ)若函数的图象在点处的切线互相垂直,且,证明:; (Ⅲ)若函数的图象在点处的切线重合,求的取值范围. 参考答案 一、选择题 1.B 2.D 3.B 4.C 5.D 6.A 7.A 8.C 9.C 10.A 11.1 12.2 13.36 14. 15.(2,4) 16.解:设的公比为q.由已知可得 ,, 所以,,解得 或 , 由于。因此不合题意,应舍去, 故公比,首项. 所以,数列的前项和. ……………………………………… 12分 17.解:(Ⅰ)由 得 , 则 ,即 又,则 . ……………………………………… 5分 (Ⅱ)由正弦定理,有 ,所以, 由题知,则 ,故. 根据余弦定理,有 , 解得 或 (负值舍去), 向量在方向上的投影为. …………………………… 12分 18.解:(Ⅰ)变量是在这 个整数中等可能随机产生的一个数,共有24种可能. 当从这12个数中产生时,输出y的值为1,故; 当从这8个数中产生时,输出y的值为2,故; 当从这4个数中产生时,输出y的值为3,故. 所以输出的值为1的概率为,输出的值为2的概率为,输出的值为3的概率为. ……………………………………… 6分 (Ⅱ)当时,甲、乙所编程序各自输出的值为的频率如下, 输出的值为1的频率 输出的值为2的频率 输出的值为3的频率 甲 乙 比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大. ……………………………………… 12分 19.解:(Ⅰ)如图,在平面ABC内,过点作直线,因为在平面外,BC在平面内,由直线与平面平行的判定定理可知,平面. 由已知,,是BC中点,所以BC⊥AD,则直线, 又因为底面,所以, 又因为AD,在平面内,且AD与相交, 所以直线平面. ……………………………………… 7分 (Ⅱ)过D作于E,因为平面,所以, 又因为AC,在平面内,且AC与相交,所以平面, 由,∠BAC,有,∠DAC, 所以在△ACD中,, 又,所以 因此三棱锥的体积为.……………………………………… 12分 20.解:(Ⅰ)将代入得 则 ,(*) 由得 . 所以的取值范围是. …………………………… 4分 (Ⅱ)因为M、N在直线l上,可设点M、N的坐标分别为,,则 ,,又, 由得,, 所以 由(*)知 ,, 所以 , 因为点Q在直线l上,所以,代入可得, 由及得 ,即 . 依题意,点Q在圆C内,则,所以 , 于是,n与m的函数关系为 () …………………………… 13分 21.解:(Ⅰ)函数的单调减区间为,单调增区间为,. …………………………… 3分 (Ⅱ)由导数的几何意义知,点A处的切线斜率为,点B处的切线斜率为, 故当点处的切线互相垂直时,有, 当x<0时, 因为,所以 ,所以,, 因此, (当且仅当,即且时等号成立) 所以函数的图象在点处的切线互相垂直时有. …………………………… 7分 (Ⅲ)当或时,,故. 当时,的图象在点处的切线方程为 即 . 当时,的图象在点处的切线方程为 即 . 两切线重合的充要条件是, 由①及知,, 由①、②得 , 令,则,且 设,则 所以为减函数,则, 所以, 而当且t趋向于0时,无限增大, 所以的取值范围是. 故当函数的图象在点处的切线重合时,的取值范围是. …………………………… 14分查看更多