- 2021-06-24 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
人教A数学必修一指数函数及其性质学案
重庆市万州分水中学高中数学 2.1.2 指数函数及其性质(1)学案 新人教A版必修1 学习目标 1. 了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系; 2. 理解指数函数的概念和意义; 3. 能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点). 学习过程 一、课前准备 (预习教材P54~ P57,找出疑惑之处) 复习1:零指数、负指数、分数指数幂怎样定义的? (1) ; (2) ; (3) ; . 其中 复习2:有理指数幂的运算性质. (1) ;(2) ; (3) . 二、新课导学 ※ 学习探究 探究任务一:指数函数模型思想及指数函数概念 实例: A.细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么? B.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么? 讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么? 新知:一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R. 反思:为什么规定>0且≠1呢?否则会出现什么情况呢? 试试:举出几个生活中有关指数模型的例子? 探究任务二:指数函数的图象和性质 引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? 回顾: 研究方法:画出函数图象,结合图象研究函数性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 作图:在同一坐标系中画出下列函数图象: , 讨论: (1)函数与的图象有什么关系?如何由的图象画出的图象? (2)根据两个函数的图象的特征,归纳出这两个指数函数的性质. 变底数为3或后呢? 新知:根据图象归纳指数函数的性质. a>1 00,a≠1)的图象恒过定点( ). A. B. C. D. 3. 指数函数①,②满足不等式 ,则它们的图象是( ). 4. 比较大小: . 5. 函数的定义域为 . 课后作业 1. 求函数y=的定义域. 2. 探究:在[m,n]上,值域? 查看更多