- 2021-06-24 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习:课时达标检测(二十一) 三角函数的图象与性质
课时达标检测(二十一) 三角函数的图象与性质 [练基础小题——强化运算能力] 1.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A.y=cos B.y=sin C.y=sin 2x+cos 2x D.y=sin x+cos x 解析:选A y=cos=-sin 2x,最小正周期T==π,且为奇函数,其图象关于原点对称,故A正确;y=sin=cos 2x,最小正周期为π,且为偶函数,其图象关于y轴对称,故B不正确;C,D均为非奇非偶函数,其图象不关于原点对称,故C,D不正确. 2.函数f(x)=tan的单调递增区间是( ) A.(k∈Z) B.(k∈Z) C.(k∈Z) D.(k∈Z) 解析:选B 由kπ-<2x-<kπ+(k∈Z),得-<x<+(k∈Z),所以函数f(x)=tan的单调递增区间为(k∈Z). 3.已知函数y=sin ωx(ω>0)在区间上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为( ) A. B. C. D. 解析:选A 由题意知即其中k∈Z,则ω=,ω=或ω=1,即ω的取值集合为. 4.设函数f(x)=3sin,若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为________. 解析:∵对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,∴f(x1),f(x2)分别为函数f(x)的最小值和最大值,∴|x1-x2|的最小值为T=×=2. 答案:2 5.已知x∈(0,π],关于x的方程2sin=a有两个不同的实数解,则实数a的取值范围为________. 解析:令y1=2sin,x∈(0,π],y2=a,作出y1的图象如图所示.若2sin=a在(0,π]上有两个不同的实数解,则y1与y2应有两个不同的交点,所以0)的图象的相邻两条对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,x0∈,则x0=( ) A. B. C. D. 解析:选A 由题意得=,T=π,则ω=2.由2x0+=kπ(k∈Z),得x0=-(k∈Z),又x0∈,所以x0=. 5.设函数f(x)=(x∈R),则f(x)( ) A.在区间上是减函数 B.在区间上是增函数 C.在区间上是增函数 D.在区间上是减函数 解析:选B 由f(x)=可知,f(x)的最小正周期为π.由kπ≤x+≤+kπ(k∈Z),得-+kπ≤x≤+kπ(k∈Z),即f(x)在(k∈Z)上单调递增;由+kπ≤x+≤π+kπ(k∈Z),得+kπ≤x≤+kπ(k∈Z),即f(x)在(k∈Z)上单调递减.将各选项逐项代入验证,可知B正确. 6.(2017·安徽江南十校联考)已知函数f(x)=sin(ωx+φ)ω>0,|φ|<的最小正周期为4π,且对任意x∈R,都有f(x)≤f成立,则f(x)图象的一个对称中心的坐标是( ) A. B. C. D. 解析:选A 由f(x)=sin(ωx+φ)的最小正周期为4π,得ω=.因为f(x)≤f恒成立,所以f(x)max=f,即×+φ=+2kπ(k∈Z),所以φ=+2kπ(k∈Z),由|φ|<,得φ=,故f(x)=sin.令x+=kπ(k∈Z),得x=2kπ-(k∈Z),故f(x)图象的对称中心为(k∈Z),当k=0时,f(x)图象的一个对称中心的坐标为,故选A. 二、填空题 7.函数y=tan的图象与x轴交点的坐标是________. 解析:由2x+=kπ(k∈Z)得,x=-(k∈Z). ∴函数y=tan的图象与x轴交点的坐标是,k∈Z. 答案:,k∈Z 8.若函数f(x)=sin ωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=________. 解析:∵f(x)=sin ωx(ω>0)过原点, ∴当0≤ωx≤,即0≤x≤时,y=sin ωx是增函数; 当≤ωx≤,即≤x≤时,y=sin ωx是减函数. 由f(x)=sin ωx(ω>0)在上单调递增, 在上单调递减知,=,∴ω=. 答案: 9.已知函数f(x)=3sin(ω>0)和g(x)=3cos(2x+φ)的图象的对称中心完全相同,若x∈,则f(x)的取值范围是________. 解析:由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f(x)=3sin,当x∈时,-≤2x-≤,所以-≤sin≤1,故f(x)∈. 答案: 10.已知函数f(x)=cos,其中x∈m∈R且m>,若f(x)的值域是,则m的最大值是________. 解析:由x∈,可知≤3x+≤3m+,∵f=cos=-,且f=cos π=-1,∴要使f(x)的值域是,需要π≤3m+≤,解得≤m≤,即m的最大值是. 答案: 三、解答题 11.已知函数f(x)=sin(ωx+φ)的最小正周期为π. (1)求当f(x)为偶函数时φ的值; (2)若f(x)的图象过点,求f(x)的单调递增区间. 解:∵f(x)的最小正周期为π,则T==π,∴ω=2, ∴f(x)=sin(2x+φ). (1)当f(x)为偶函数时,f(-x)=f(x).即sin(2x+φ)=sin(-2x+φ),展开整理得sin 2xcos φ=0,由已知,上式对任意x∈R都成立,∴cos φ=0.∵0<φ<,∴φ=. (2)由f(x)的图象过点,得sin=, 即sin=. 又∵0<φ<,∴<+φ<π, ∴+φ=,则φ=.∴f(x)=sin. 令2kπ-≤2x+≤2kπ+,k∈Z, 得kπ-≤x≤kπ+,k∈Z. ∴f(x)的单调递增区间为,k∈Z. 12.已知函数f(x)=a+b. (1)若a=-1,求函数f(x)的单调增区间; (2)若x∈[0,π]时,函数f(x)的值域是[5,8],求a,b的值. 解:f(x)=a(1+cos x+sin x)+b =asin+a+b. (1)当a=-1时,f(x)=-sin+b-1, 由2kπ+≤x+≤2kπ+(k∈Z), 得2kπ+≤x≤2kπ+(k∈Z), ∴f(x)的单调增区间为,k∈Z. (2)∵0≤x≤π,∴≤x+≤, ∴-≤sin≤1,依题意知a≠0. ①当a>0时,∴a=3-3,b=5. ②当a<0时,∴a=3-3,b=8. 综上所述,a=3-3,b=5或a=3-3,b=8. 查看更多