- 2021-06-16 发布 |
- 37.5 KB |
- 87页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
积分表积分公式推导(打印版)(精品)
高等数学 积 分 表 公 式 推 导 目 录 (一)含有 bax + 的积分(1~9)·······················································1 (二)含有 bax + 的积分(10~18)···················································5 (三)含有 22 ax ± 的积分(19~21)····················································9 (四)含有 )0( 2 >+ abax 的积分(22~28)············································11 (五)含有 )0( 2 >++ acbxax 的积分(29~30)········································14 (六)含有 )0( 22 >+ aax 的积分(31~44)·········································15 (七)含有 )0( 22 >− aax 的积分(45~58)·········································24 (八)含有 )0( 22 >− axa 的积分(59~72)·········································37 (九)含有 )0( 2 >++± acbxa 的积分(73~78)····································48 (十)含有 或 ))(( xbax −− 的积分(79~82)···························51 (十一)含有三角函数的积分(83~112)···········································55 (十二)含有反三角函数的积分(其中 0>a )(113~121)·······················68 (十三)含有指数函数的积分(122~131)··········································73 (十四)含有对数函数的积分(132~136)··········································78 (十五)含有双曲函数的积分(137~141)··········································80 (十六)定积分(142~147)····························································81 附录:常数和基本初等函数导数公式·········································85 bx ax − − ± - 1 - (一)含有 bax + 的积分(1~9) Cbaxln abax dxbaxt C t ln a dt tabax dx dt a dx,adxdtttb ax a bxx bax )x(f Cbaxln abax dx. ++⋅= + += +⋅= = + ∴ =∴=≠=+ −≠ + = ++⋅= + ∫ ∫∫ ∫ 1 1 11 1 )0( }|{ 1 1 1 代入上式得:将 ,则令 的定义域为被积函数证明: Cbax μa dxbaxbaxt C t μa dtt a dxbax dt a dx,adxdttbax μCbax μa dxbax. μμ μ μμ μμ ++⋅ + =++= +⋅ + = =+∴ =∴==+ −≠++⋅ + =+ + + + ∫ ∫∫ ∫ 1 1 1 )( )1( 1)( )1( 1 1)( 1 , 1)( )( )1( 1)( 2 代入上式得:将 则令证明: ( ) ( ) ( ) ( ) ( ) C bax lnbbax a dx bax xbaxt C t lnbt a C t ln a b a t dt t b a dt a dt t b1 a dt a · t bt adx bax x dt a dx ,bt a x,t tbax a bx|x bax x)x(f C bax lnbbax a dx bax x. 2 2 22 22 2 2 ++⋅−+= + += +⋅−= +⋅−= −= ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −= − = + ∴ =−=≠=+ −≠ + = ++⋅−+= + ∫ ∫ ∫ ∫∫∫ ∫ 1 1 11 11 1 11 )0( }{ 1 3 代入上式得:将 则令 的定义域为被积函数证明: - 2 - Cbaxlnbbaxbbax a dx bax x Cbaxln a bbaxd baxa bdx bax b a Cbaxln a bx a b baxd baxa bdx a b axd bax bbax a bdx bax abx a Cbax a dxbax a dx bax b a dx bax abx a dxbax a dx bax babxbax a dx bax x Cbaxlnbbaxbbax a dx bax x +⎥⎦ ⎤ ⎢⎣ ⎡ +⋅++−+= + ++=+ + = + ++−= + + −= + −+ = + ++=+ + − + −+= + −−+ = + +⎥⎦ ⎤ ⎢⎣ ⎡ +⋅++−+= + ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫ ∫∫ ∫ )( 2)( 2 11 )(11 22 )(122 )(221 )( 2 1)(1 121)(1 )2)(1 )( 2)( 2 11 .4 22 3 2 33 2 3 22 2 23 2 3 3 2 3 32 1 2 32 2 222 22 2 2 22 3 2 由以上各式整理得: 证明: ∵ C x baxln b C bax xln b Cbaxln b xln b )bax(d baxb dx xb dx baxb adx xb dx )bax(b a bxbaxx dx b a b Ab BAa bxaxbax bax B xbaxx a bx|x baxx )x(f C x baxln bbaxx dx. + + ⋅−= + + ⋅= ++⋅−⋅= + + −= + −= +⋅ −= + ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ −= = ⇒ ⎩ ⎨ ⎧ = =+ ∴ ++=++= + += +⋅ −≠ +⋅ = + + ⋅−= + ∫∫ ∫∫∫∫ ∫ 1 1 1 1 1111 111]1[ )( B 1A 1 0 AB)(AB)A(1 , A )( 1 }{ )( 1 1 )( 5 于是 有 则设 的定义域为被积函数证明: blogblog aa −=−1 提示: - 3 - C x baxln b a bx Cbaxln b a bx xln b a baxd baxb adx xb dx xb a dx baxb adx xb dx xb a baxx dx b aC b b a Bb aBAb CAa baBAbxax Cxbaxbaxx bax C x B xbaxx a bxx baxx xf C x baxln b a bxbaxx dx + + ⋅+−= ++⋅+−⋅−= + + ++−= + ++−= + ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = = −= ⇒ ⎪ ⎩ ⎪ ⎨ ⎧ = =+ =+ ∴ =++++ ++++= + ++= +⋅ −≠ +⋅ = + + ⋅+−= + ∫∫∫ ∫∫∫∫ ∫ 1 1 )(1111 1111 )( 1B A 1 0 0 1B)( C)(A )B()( A1 , A )( 1 }|{ )( 1)( 1 )( .6 2 22 222 2 2 222 2 2 2 2 2 22 2 22 于是 有 即 则设 的定义域为被积函数证明: C bax bbaxln a C baxa bbaxln a baxd baxa bbaxd baxa dx baxa bdx baxa dx bax x a bB a BAb Aa xBAbax baxx bax B bax A bax x a bx|x bax x)x(f C bax bbaxln a dx bax x. +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ++= + + ++⋅= + + −+ + = + − + = + ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ −= = ⇒ ⎩ ⎨ ⎧ =+ = ∴ =++⋅ ++= + + + = + −≠ + = +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ++= + ∫∫ ∫∫∫ ∫ 1 )( 1 )( )( 1 )(11 )( 1 11 )( 1A 0 1 )(A B)A( , )( )( }{ )( 1 )( 7 2 22 222 22 22 2 22 于是 有 即 则设 的定义域为被积函数证明: - 4 - ( ) C bax b bax lnbbax a dx bax xbaxt C t b t lnbt a C t ln a bt ata b dt ta bdt a dt ta bdt ta bttbdx bax x ta bttb ta tb bax x dt a dx ,bt a x,t tbax a bx|x bax x)x(f C bax b bax lnbbax a dx bax x. +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + −+⋅−+= + += +−⋅−= +⋅−⋅+−= −+= −+ = + ∴ −+ = − = + ∴ =−=≠=+ −≠ + = +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + −+⋅−+= + ∫ ∫∫∫∫∫ ∫ 2 32 2 2 3 333 2 3323 2 23 22 2 2 22 22 22 2 2 2 2 2 2 32 2 21 )( )2(1 21 12112 )( 2)( )( 11 )0( }{ )( 21 )( 8 代入上式得:将 则令 的定义域为被积函数证明: C| x bax|ln· bbaxb C bax · b b||axln b |x|ln b dx baxb adx baxb adx xbbaxx dx b aD b aB b A 1Ab 0DBbAab2 0BaAa AbDBbAab2xBaAax DxBbxBaxAabx2AbxAa DxbaxBxbaxA1 bax D bax B x A baxx a bx|x baxx )x(f C| x bax|ln bbaxbbaxx dx. 2 2 2 22 2222 2 2 + + − + = + + ++⋅−⋅= + − + −= + ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ −= −= = ⇒ ⎪ ⎩ ⎪ ⎨ ⎧ = =++ =+ ∴ +++++= +++++= ++++= + + + += + −≠ + = + + − + = + ∫∫∫∫ ∫ 2 22 222 2 2 2 2 22 1 )( 1 1111 )( 1111 )( 1 )()( )()( )()( 1 }{ )( 1 ·1 )( 1 )( 9 于是 有 则 设: 的定义域为证明:被积函数 - 5 - (二)含有 bax + 的积分(10~18) Cbax a Cbax a baxdbax a dxbax Cbax a dxbax ++⋅= ++⋅ + ⋅=++=+ ++⋅=+ + ∫∫ ∫ 3 1 2 1 2 1 3 )( 3 2 )( 2 11 11)()(1 )( 3 2 .10 证明: Cbaxbax a Cbaxbbax a dxbaxxbaxt Cbt a t Ct a bt a dt a bdt a dtbtt a dt a tt a btdxbaxx t a btbaxxdt a tdx a btxttbax Cbaxbax a dxbaxx ++⋅−⋅= ++⋅−+=++= +−= +⋅−⋅=−= −=⋅⋅ − =+∴ ⋅ − =+= − =≥=+ ++⋅−⋅=+ ∫ ∫∫ ∫∫∫ ∫ 3 2 3 2 2 2 3 3 2 5 2 3 2 5 2 24 2 2 22 3 2 )()23( 15 2 )(]5)(3[ 15 2 )53( 15 2 3 2 5 2 3 2 5 2 )(22 , 2 , , )0( )()23( 15 2 .11 代入上式得:将 则令证明: [ ] Cbaxbabxxa a baxbbabxbxabax a dxbaxx baxt Cbtbt a t Ct a bt a bt a Ct a bt a bt a dtt a bdtt a bdtt a dtbttbtt a dxbaxx a bttbtt a btbaxx dt a tdx a btxttbax Cbaxbabxxa a dxbaxx ++⋅+−⋅= +⋅−++++⋅=+ += +−+⋅= +⋅−⋅+⋅= +⋅ + ⋅−⋅ + ⋅+⋅ + ⋅= −−= −+⋅=+∴ −+ =⋅ − =+ = − =≥=+ ++⋅+−⋅=+ ∫ ∫∫∫ ∫∫ ∫ +++ 3222 3 22223 3 2 224 3 3 5 3 3 3 2 7 3 14 3 21 3 2 16 3 4 3 2 3 2 6 3 325 3 2 2 325 2 22 2 2 3222 3 2 )()81215( 105 2 )(4235301515 )( 105 2 )423515( 105 2 5 4 3 2 7 2 41 14 21 12 61 12 422 )2(2 2)( , 2 , , )0( )()81215( 105 2 .12 代入上式得:将 则令证明: - 6 - Cbaxbax a Cbax a bbaxbax a dx bax xbaxt Ct a bt a Ct a bt a bdt a dtt a dt a t at btdx bax x dt a tdx a btxttbax Cbaxbax a dx bax x ++⋅−⋅= ++⋅−+⋅+⋅= + += +⋅−⋅= +⋅−⋅ + ⋅= −= ⋅ − = + ∴ = − =>=+ ++⋅−⋅= + ∫ ∫∫ ∫∫ ∫ + )()2( 3 2 )(2)()( 3 2 2 3 2 2 21 12 22 2 , 2 , , )0( )()2( 3 2 .13 2 22 2 3 2 2 12 2 2 2 2 2 2 2 代入上式得:将 则令证明: [ ] Cbaxbabxxa a Cbaxbaxbbabxbxabax a dx bax x baxt Cbtbt a t Ctbtbt a dtt a bdtb a dtt a dtbtbt a dt a t ta btdx bax x dt a tdx a btxttbax Cbaxbabxxa a dx bax x ++⋅+−⋅= ++⋅+⋅−+++⋅+⋅= + += +−+⋅= +−+= −+= −+= ⋅⋅ − = + ∴ = − =>=+ ++⋅+−⋅= + ∫ ∫∫∫ ∫ ∫∫ ∫ )()843( 15 2 )()(1015)2(3)( 15 2 )10153( 15 2 ) 3 2 5 1(2 422 )2(2 21)( , 2 , , )0( )()843( 15 2 .14 222 3 2222 3 2 224 3 325 3 2 3 2 3 4 3 224 3 2 22 2 222 3 2 代入上式得:将 则令证明: - 7 - ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ >+ − + ⋅ − >+ ++ −+ ⋅ = + + − + ⋅ − = + += + − ⋅ − = −+ = − < + ++ −+ ⋅= + += + + − ⋅= − = − > − = ⋅ ⋅ − = + ∴ = − =>=+ ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ <+ − + ⋅ − >+ ++ −+ ⋅ = + ∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ )0( 2 )0( 1 2 , 1 2 t 2 )( 122 0 .2 1 1 )( 122 0b .1 2 21 , 2 , , )0( )0( 2 )0( 1 .15 222 222 2 2 2 bC b baxarctan b bC bbax bbaxln b baxx dx C b baxarctan bbaxx dxbaxt C b arctan b dt bt dt bt b C bbax bbaxln bbaxx dxbaxt C bt btln b dt bt dt bt dt bt dt a t t a btbaxx dx dt a tdx a btxttbax bC b baxarctan b bC bbax bbaxln b baxx dx 得:综合讨论 代入上式得:将 ,时当 代入上式得:将 ,时当 则令证明: C ax axln aax dx + + − ⋅= −∫ 2 1 21 22:公式 C a xarctan aax dx +⋅= +∫ 1 19 22:公式 - 8 - ∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫∫ ∫∫ + − + −= + + + − + −= +⋅+ + − + −= ++ + − + −= +− + −= + + + −= + ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ = −= ⇒ ⎩ ⎨ ⎧ = =+ ∴ ++= + + + = +⋅ + − + −= + − baxx dx b a bx bax dx baxxb a bx baxdx baxxb a dxbaxa xbbx baxdx baxxb a baxd xbbx baxdx baxxb a x dbax b dx baxxb a dx x bax b dx baxxb a baxx dx b b a Bb BaA baxx x baxB baxxbaxx baxx dx b a bx bax baxx dx 2 1 2 1 )( 2 111 111 1 11 11 1B A 1 0 )B( A1 , A1 2 .16 2 1 22 22 2 于是 有 则设证明: 2 2 12 )(2 2 122 122 1 , 122 122 2 2 2 2 , , )0( 2 .17 2 2 2 2 22 222 2 2 2 2 ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫∫ ∫∫∫ ∫∫ + ++= + ⋅ −+ ++= + += ⋅ − += − += + ∴ − ∴ − += − += − +− = − =⋅ − = + ∴ = − =≥=+ + ++= + baxx dxbbax dx bax a bbax bbaxdx x baxbaxt dx t a bt bt dt bt btdx x bax dt bt Rb dt bt bt dt bt bdtdt bt bbt dt bt tdt a t bt atdx x bax dt a tdx a btxttbax baxx dxbbaxdx x bax 代入上式得:将 不能明确积分符号可正可负取值为 则令证明: ∵ - 9 - (三)含有 22 ax ± 的积分(19~21) 2 2 )(1 1 1 2 .18 2 1 2 2 ∫ ∫ ∫ ∫∫ ∫∫ + + + −= ⋅+⋅+ + −= ++ + −= +−= + + + + −= + − baxx dxa x bax dxabax xx bax baxd xx bax x dbaxdx x bax baxx dxa x baxdx x bax 证明: C a xarctan aax dx a xarctant a xarctan ttanta x Ct a dt a t dtseca tsecaax dx tsecattana dx ax t dtsecatantaddxπtπtantax C a xarctan aax dx 2 22 222 2 +⋅= + = =∴⋅= +⋅= = ⋅⋅= + ∴ = +⋅ = + ⋅=⋅=<<−⋅= +⋅= + ∫ ∫ ∫∫ ∫ 1 1 1 1 1 )1( 1 )( , ) 22 ( 1 .19 22 22 222 22 代入上式得:将 则令证明: ∵ - 10 - ∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ −− −− + + + + + −− −− +⋅− − + +⋅⋅− = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + −+ +⋅− = + =+ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + −+ + = + ∴ + − + = + − + − + + + = + −+ + + = + + + = ⋅+⋅−⋅− + = + − + = + +⋅− − + +⋅⋅− = + 12221222 122122222 22222122 1222222 122 2 2222 122 222 22 122 2 22 122 22 222222 1222122222 )()1(2 32 )()1(2 )( )32( )()1(2 1 )( , 1 )( )12( )(2 1 )( 1 )( 1 )()( )21( )( 12 )( 12 )( )( 2 )( )( 2 )( 2)()( )( )( 1 )()( )()1(2 32 )()1(2)( .20 nn nnn nnn n 2 nn nnn nn nn n n nnn nnn ax dx an n axan x ax dxn ax x anax dxnn ax dxn ax x na dx ax dx ax 2na ax x ax dxn dx ax nadx ax n ax x dx ax aaxn ax x dx ax xn ax x dxxaxnx ax x ax dx ax x ax dx ax dx an n axan x ax dx 则令 移项并整理得: 证明: C ax axln a Caxln a axln a dx axa dx axa dx axaxaax dx C ax axln aax dx + + − ⋅= ++⋅−−⋅= + − − = + − − = − + + − ⋅= − ∫∫ ∫∫ ∫ 2 1 2 1 2 1 1 2 11 2 1 ]11[ 2 1 2 1 .21 22 22 证明: - 11 - (四)含有 )0( 2 >+ abax 的积分(22~28) )0( 2 1 )0( 1 2 , 1 2 1 1 2 1 )( 11 1 )( 11 )( 11 0 .2 1 C1 )( 11 1 )( 1111 0b .1 )( )0( 2 1 )0( 1 .22 2 22 2 222 2 22 2 222 2 2 ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ <+ −+⋅ −−⋅ ⋅ − >+⋅⋅ = + + −+⋅ −−⋅ ⋅ − = + − + − − ⋅⋅ − = −− = + ∴ ⋅ −− =⋅ −− = + < +⋅⋅= +⋅⋅⋅= + = + ∴ ⋅ + =⋅ + = + > > ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ <+ −+⋅ −−⋅ ⋅ − >+⋅⋅ = + ∫ ∫∫ ∫∫ ∫ bC bxa bxaln ab bCx b aarctan ab bax dx C bxa bxaln ab C a bx a bx ln a a b dx a bx abax dx a a bx a a bxbax b Cx b aarctan ab x b aarctan b a a dx a bx abax dx a a bx a a bxbax 0a bC bxa bxaln ab bCx b aarctan ab bax dx 得:综合讨论 ,时当 ,时当 证明: Cb axln a baxd baxa dx bax dx bax x aCbaxln a dx bax x 2 2 ++⋅= + + = + = + >++⋅= + ∫ ∫∫ ∫ 2 1 )(1 2 1 1 2 1 )0( 2 1 .23 2 2 2 22 2 证明: - 12 - ∫ ∫∫ ∫ ∫∫ ∫∫ + −= + −= + −= ⋅ + = + > + −= + bax dx a b a x dx baxa bdx ba b dx baxba b dx bbax ax a bdx bax x a bax dx a b a xdx bax x 2 2 2 2 2 2 2 22 2 11 )11( 1 )0( .24 证明: C 2 1 2 1 2 1 )(1 2 11 2 1 1 2 1 2 1 ] )( 1[ 2 1 )( 1 1 )()(1 )( 1 )( 1 2 1 )()( )( C 2 1 )( .25 2 2 22 22 2 22 2 2 2 2 2 2 2 2 2 + + = ++−= + + −= + −= + −= + ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ −= = ⇒ ⎩ ⎨ ⎧ = =+ ∴ ++=++= + += + + = + = + >+ + ⋅= + ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫ bax xln· b Cbax ln · b xln· b baxd baxb dx xb dx baxb adx xb dx baxb a bxbaxx dx b aB b A Ab 0BAa AbBAax BxbaxA bax B x A baxx dx baxx dx baxx x baxx dx 0a bax xln bbaxx dx 2 2 22 222 222 2 22 2 于是 有 则 设: 证明: - 13 - ∫ ∫∫ ∫∫ ∫∫ + −−= + −= + −= + ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ −= = ⇒ ⎩ ⎨ ⎧ = =+ ∴ ++=++= + += + > + −−= + bax dx b a bx dx baxb adx xb dx baxb a bxbaxx dx b aB b A Ab 0BAa AbBAax BxbaxA bax B x A baxx a bax dx b a bxbaxx dx 2 2 22 222 222 22 1 111 ] )( 1[ )( 1 1 )()(1 )( 1 0)( 1 )( .26 2 22 2 2 于是 有 则 设:证明: C bxx bax ln b a Cbax ln · b a bx xln· b a dx baxb adx xb dx xb a baxx dx b aC b aA b B Bb BaAb CAa BbxBaAbxCAa CxbaxBbaxAx bax C x B x A baxx dx baxx dx baxx x baxx dx 0aC bxx bax ln b a baxx dx 22 2 22 222 2 22 2 +− + = +++−−= + ++−= + ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ = −= = ⇒ ⎪ ⎩ ⎪ ⎨ ⎧ = =+ =+ ∴ ++++= ++++= + ++= + + = + = + >+− + = + ∫∫∫∫ ∫ ∫∫ ∫ 22 2 2 2 22 2 2 2 2 2 2 4 2 223 2 2 2 4 42 44 2 4 43 22 2 23 2 1 2 22 1 2 1 2 1 2 11 2 )( 1 1 0 0 )()( )()(1 )( 1 )( 1 2 1 )()( )( 2 1 2)( .27 于是 有 则 设: 证明: - 14 - (五)含有 )0( 2 >++ acbxax 的积分(29~30) [ ] ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ >+ −++ −−+ ⋅ − <+ − + ⋅ − = ++ + −++ −−+ ⋅ − = + −−+ = −−+ = −++ = ++ > + − + ⋅ − = + −++ = −++ = ++ < −++ = ++ ∴ −++=++ > ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ >+ −++ −−+ ⋅ − <+ − + ⋅ − = ++ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫∫ ∫ )4( 4 4 4 1 )4( 4 2 2 , 1 4 4 4 1 )2( )4()( 1 2 4 )4()( 14 )()( 14 4 .2 4 2 )2( )()( 1 2 4 )()( 14 4 .1 )()( 14 )()( 4 1 )0( )4( 4 4 4 1 )4( 4 2 .29 2 2 2 2 2 2 22 2 22 2 2 22 222 2 22 22 2 2 2 2 2 acbC acbb2ax acbb2axln acb acbC b4ac b2axarctan bac cbxax dx C acbb2ax acbb2axln acb baxd acbb2axa a dx acbb2ax a dx b4acb2ax a cbxax dxacb C b4ac b2axarctan bac baxd b4acb2axa a dx b4acb2ax a cbxax dxacb dx b4acb2ax a cbxax dx b4acb2ax a cbxax a acbC acbb2ax acbb2axln acb acbC b4ac b2axarctan bac cbxax dx 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 得:综合讨论 ,时当 ,时当 证明:∵ C a x arctan aax dx +⋅= +∫ 1 19 22:公式 C 2 1 21 22 + + −⋅= −∫ ax axln aax dx :公式 2 1 )(2 )(2 1 2 1 )(2)(2 1 2 1 2 1 )(2 1 )(2 1 2 11 2 1 )(2 1 ) )(2 1 2 1( )(2 1 2 1 1 1 02 2 2)(1 2)(2 1 2 1 11 2 1 2 1 11 2 1 1 2 1 )( )( 2 1 )(2)( 28 2 2 2 2 2 ∫ ∫∫ ∫∫ ∫ ∫ ∫∫∫ ∫∫ + + + = + + + −+ = + ++ + −= + +− + −= + −− + −= ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ −= = ⇒ ⎩ ⎨ ⎧ = =+ ∴ ++=++= + += + ⋅ + − + ⋅−= + + + ⋅−= + −= + > + + + = + bax dx bbaxb x dx baxbbbaxabx bbaxdx baxbbabxbaxax dx baxbb dx xabbaxax dx baxbabxbaxax b B b A Ab BaAa Abx)BaAa(BaxbaxA bax B ax A baxax dx axbaxbaxax ax d baxbaxaxbax d axbax dx 0a bax dx bbaxb x bax dx. 22 22 2 22 222 222 22 222 22 2222 222 上式于是 有 ,则设: 证明: - 15 - (六)含有 )0( 22 >+ aax 的积分(31~44) ∫ ∫∫ ∫∫ ∫∫ ∫∫ ++ −++⋅= ++ −++ ++ = ++ − + ++ + = ++ −+ ⋅= ++ > ++ −++⋅= ++ cbxax dx a bcbxaxln a dx cbxaxa bcbxaxd cbxaxa dx cbxax b a dx cbxax bax a dx cbxax bbax a dx cbxax x a cbxax dx a bcbxaxln a dx cbxax x 2 2 2 2 2 22 22 2 2 2 2 2 1 1 2 )(1 2 1 2 12 2 1 2 2 1 )0( 2 2 1 .30 证明: C)( , 1 |AB| , |AC| BRt 1 , 01 , 22 || , ) ) 22 ( }{1 )0( C)( 31 22 22 22 3 22 2 22 2 22 222 22 22 2 22 22 22 22 22 122 +++= + ∴ >++ +++= +−++= + ++ = ++= + ∴ = + ==∴ +====∠ ++= = ⋅= + ∴ =+∴>=<<− =+==<<−= ∈ + = >+++=+= + ∫ ∫ ∫ ∫∫ ∫ axxln ax dx 0xax C xax ln Clna xax ln C a xax ln C tant sect ln ax dx a xtant a ax cost sect axx,a|BC|,tABCΔ C tant sect ln dtsect dtt seca sectaax dx sectaax cost sectπtπ sectaaxtdt secatanta(ddx ,πtπtantax Rx|x ax )x(f aaxxlnC a xarsh ax dx. 2 2 ∵ ∵ 则中,设在 则可令 的定义域为被积函数证明: Cttantseclntdtsec ++=∫ || 87 :公式 - 16 - 1 )( |AB| |AC|sint |AB| , |AC|, || , BRt 1cos1 11 1 )( )( , 01 , 22 ||)( , ) ( ,) 22 ( }|{ )( 1)( )0( )( .32 2222322 22 22 22 2322 322 322 322 222322 C axa xCsint aax dx ax x axxaBCtABCΔ Csint a tdt a dt secta dtt seca t secaax dx t secaax cost sectπtπ t secaaxtdt secatantaddx πtπtantax Rxx ax xf aC axa x ax dx 2 33 33 332 + + =+⋅= + ∴ + ==∴ +====∠ +== =⋅= + ∴ =+∴>=<<− =+==<<−= ∈ + = >+ + = + ∫ ∫ ∫∫∫ ∫ 则中,设在 则可令 的定义域为被积函数证明: ∵ Caxdx ax xaxt Ctdt dt at t t atdx ax x dt at ttdtatdx atxttax aCaxdx ax x ++= + += +== − ⋅ − = + ∴ − =⋅−=∴ −=>=+ >++= + ∫ ∫ ∫∫ ∫ − 22 22 22 22 22 22 22 2 1 22 2222 22 22 2)( 2 1 , )0( )0( .33 代入上式得:将 则令证明: C ax Cax axdax dxaxdxaxxdx ax x aC ax dx ax x + + −= ++⋅ − ×= ++= +=+⋅= + >+ + −= + − − −− ∫ ∫∫∫ ∫ 22 2 3122 222 3 22 22 3 222 3 22 322 22322 1 )( 2 31 1 2 1 )()( 2 1 )( 2 1)( )( )0( 1 )( .34 证明: - 17 - C)( 22 C)( )( 22 31)( C)( 1 39)( C)( 22 1 )0( C)( 22 .35 22 2 22 22222 2 22 22 2 22 22 22 2 2222 22 222 22 222 22 2 22 2 22 22 2 +++⋅−+⋅= +++⋅−++++⋅= + ∴ +++= + +++⋅++⋅=+ + −+= + −+ = + >+++−+⋅= + ∫ ∫ ∫ ∫∫ ∫∫ ∫ axxlnaaxx axxlnaaxxlnaaxxdx ax x axxlnxd ax axxlnaaxxdxax xd ax adxax dx ax aaxdx ax x aaxxlnaaxxdx ax x 公式 公式 证明: ∵ C)( )( )( 1, |AB| , |AC|, || , BRt cos1 1 )( )( , 01 , 22 )( ) ( ,) 22 ( }|{ )( )( )0( C)( )( .36 22 22322 2 22 22 22 22 22 322 2 22 22 22 322 2 322 2 322 2 322 2 22 22322 2 ++++ + −= + ∴ >++ +− + −++= + + − ++ = +−+= + ∴ + === + =∴ +====∠ +−+= −=−= − ==⋅= + ∴ = + ∴>=<<− = + ==<<−= ∈ + = >++++ + −= + ∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫ axxln ax xdx ax x 0xax Clna ax x xax ln C ax x a xax ln Csint tant sectlndx ax x a ax cost sect , a xtant ax xsint axxaBCtABCΔ Csint tant sectln dttdtsectdt sect dtsect dt sect tsecdt sect ttantdt seca t seca ttandx ax x t seca ttan ax x cost sectπtπ |t seca| ttana ax xtdt secatantaddx πtπtantax Rxx ax xxf aaxxln ax xdx ax x 1 1 1 1 22 2 3 2 3 2 33 22 2 ∵ ∵ 则中,设在 ,则可令 的定义域为被积函数证明: Ctantsectlndtt ++=∫ | | sec 87 :公式 - 18 - 1 )( 2 1 )( 2 1 )( 2 1 2 1 1 1 2)( 2 1 , )0( )0( 1 .37 22 2 222 222 222 22 22 22 2 22 222222 22 2 1 22 2222 22 22 C x aaxln a C x aax ln a C aax aax ln aaxx dxaxt C at at ln a C at at ln a dt at dt at t attaxx dx dt at ttdtatdx atxttax aC x aaxln aaxx dx + −+ ⋅= + −+ ⋅= + −+ −+ ⋅= +⋅ += + − − ⋅= + + − ⋅= − = − ⋅ −⋅ = +⋅ ∴ − =⋅−=∴ −=>=+ >+ −+ ⋅= +⋅ ∫ ∫ ∫∫ ∫ − 代入上式得:将 则令证明: C 2 1 21 22 + + − ⋅= −∫ ax axln aax dx :公式 bnlogblog a n a = 提示: 1 11 )1( 2 11 1 2 1 )1( 1 1 2 1 1 2 2 1 11 111 1 , )0( 1 11 )0( .38 2 22 222 22 2 2 1122 2 22 222 22 2 2 22 2 2 22 22222 2 22 222 C xa ax axx dx x t Cta a Cta a tad taa dt ta ta a dt ta tdt a t x d ax t xt x t x d axaxx dx aC xa ax axx dx + + −= +⋅ = ++⋅−= ++ − ⋅−= + + −= + −= + −= + −= + −∴ =≠= + −= +⋅ >+ + −= +⋅ ∫ ∫ ∫ ∫∫∫ ∫∫ ∫ − 代入上式得:将 则令 证明: - 19 - Caxxln 2 aax 2 xdxax axxlnaaxxdxax Caxxlna dx ax adx ax xdxax axxdx ax xdxax dx ax xaxx axdxaxxdxax a Caxxln 2 aax 2 xdxax. 22 2 2222 2222222 222 22 2 22 2 22 22 22 2 22 22 2 22 222222 22 2 2222 +++⋅++=+ ++⋅++=++ +++⋅= + = + −+ += + ++∴ + −+= +−+=+ >+++⋅++=+ ∫ ∫ ∫∫∫ ∫∫ ∫ ∫∫ ∫ )( )( 2 )( 1 )0( )( 39 1 即 ②得,由① ②又 ① :证法 ∵ Caxxln 2 aax 2 xdxax lna 2 aaxxln 2 aax 2 x | a axx|ln 2 aax 2 x |tantsect|lnatantsecta a xtant, a xa cost sect xa|AB|x,tanta|AC| a|BC|,tBABCΔ ,tantax C|tantsect|lna 2 tantsecta 2 dtantsecta C|tantsect|lnsectdt sectdtatantsecta 2 dtantsecta sectdtdtantsect dt cost dt tcoscost dt tcos tcos dt tcos tsintantdtsecttant tantdsect tantdsectatantsecta dtantsectatantasectdadxax sectaax tcos tsec, 2 πt 2 π ,sectattanaax 2 πt 2 πtantax 0a Caxxln 2 aax 2 xdxax. 22 2 2222 2 22 2 22 222 2222 22 22 2 222 1 222 23 2 3 2 22 222 22 222 22 2 2222 +++⋅++⋅=+ ⋅−++⋅++⋅= ++ ⋅++⋅=++∴ =+==∴ +=== ==∠∴⋅= +++⋅= ++= += −= −⋅= − = =⋅⋅= −⋅= ==+∴ =+∴>=<<− =+=+<<−⋅= >+++⋅++⋅=+ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫∫ ∫ ∫∫ ∫ ∫∫∫ ∫ )( )( 2 1· 2 1 1 · Rt 11 87 )·(1 1111 )·(· · , 01 ·1 )( 2 )()( 39 综合①②③④⑤得 则 ,中,可设在 ⑤联立③④有 ④)(公式又 ③联立①②有 ② 又 ① ,则令:证法 ∵ ∵ tsecttan 221 =+提示: )0( )(131 >+++= + ∫ a Caxxlndx ax 22 22 :公式 - 20 - ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫∫ ∫ +++⋅⋅+++⋅=+∴ +++⋅++⋅ ⋅ +++= + ++ ⋅+⋅ + ⋅++⋅ + ⋅⋅=∴ + ===∴ +====∠ ++⋅+⋅+⋅= +++⋅⋅= +⋅⋅= = +−⋅= ⋅−−⋅= ⋅−⋅= −⋅= += +−⋅= ⋅−−⋅= ⋅−⋅= ⋅−⋅= ⋅⋅⋅−⋅= −⋅= =⋅=+∴ ⋅=+∴>=<<− =+<<−= ∈+= >+++⋅⋅+++⋅=+ Caxxlnaaxaxxdxax Cxaxln 8 3aax 8 xa3axaxx C a xaxlna 8 3 a x a ax 8 a3ax a ax a xatantdtseca a ax t sect , a xtant axxaBCtABCΔ Ctantsectlna 8 3tantsecta 8 3tanttsecatantdtseca Ctantsectlntantsect dtsecttantsecttantdtseca dttsectantdsect dtsectdttsectantsect sectdttsectantsect sectdtttantantsect sectdtanttantsecttantdsect tantdsectatanttsecatantdtseca tantdsectatantdtsecatanttseca tantdsecttsecatanttseca tantdsectttanatanttseca dttsecttanatanttseca dttantsecttsectantatanttseca tsecdtantatanttseca tantdtsecatantadtsecadxax tsecaax cost sectπtπ t secaax πtπtantax Rxxaxxf aCaxxlnaaxaxxdxax 4 3 33 3 3 3 2 2 33 33 23 23 323 23 33 333 33 33 )( 8 3)52( 8 )( )( 4 4 cos 1 |AB| , |AC|, || , BRt 4 1 2 1 2 1 2 1 2 1 )1( ) 3 ( 4 1 3 3 )1(3 3 3 3 ) ( )( )( , 01 , 22 ||)( ,) 22 ( }|{)()( )0( )( 8 3)52( 8 )( .40 2242222322 2222 2 2222 1 22 4 224 22 3 224 4 22 22 1 4444 1 4 444 444 44 44 44 44 44 4322 322 322 322 2242222322 则中,设在 联立①④得 ④ 联立②③得: ③又 ② ①移项并整理的: 则可令 的定义域为被积函数证明: ∵ ∵ ∵ Ctantsectlndtt ++=∫ | | sec 87 :公式 - 21 - Cax Cax axdax dxaxdxaxx aCaxdxaxx ++= ++⋅ + ×= ++= +=+⋅ >++=+⋅ + ∫ ∫∫ ∫ 322 2 1122 222 1 22 22 1 2222 32222 )( 3 1 )( 2 11 1 2 1 )()( 2 1 )( 2 1 )0( )( 3 1 .41 证明: - 22 - ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫∫ ∫∫∫ ∫ ∫∫∫∫ ∫ +++⋅−++⋅=+⋅∴ ++⋅=++⋅∴>++ +++⋅−++⋅= ++⋅+++⋅−+⋅= + + ⋅⋅+ ++ ⋅− + ⋅⋅=⋅∴ + ===∴ +====∠ +⋅++−⋅=⋅ ++−⋅⋅= −⋅⋅= −−⋅= −−⋅= ⋅+−⋅= −⋅=−⋅= ⋅⋅+= ⋅⋅+=⋅ −⋅⋅+= −⋅⋅+= −⋅⋅+= +=+⋅= ⋅= ⋅=⋅=⋅=+⋅∴ ⋅=+⋅∴>=<<− =+⋅<<−= ∈+⋅= >+++⋅−++⋅=+⋅ Caxxlnaaxaxxdxaxx axxlnaxaxlnaxax Cxaxlnaaxaxx Caxxxaxlnaaxxa C a ax a xa a xaxlna a ax a xatdsectsectanta a ax t sect , a xtant axxaBCtABCΔ Csectttanatantsectlnatantsectatdsectsectanta Ctantsectlntantsect dtsecttantsectsectdtant sectdtant dtsecttantsect dtsectttan dtsecttantsect sectdtttantantsect tdtsectantsecttantdsecttantsectsectdtant tsecttanatdsectanta tsecttanatdsectantatdsectsectanta dsecttanttsecatsecttanatdsectanta dtttantsecatsecttanatdsectanta tdtantsecatsecttanatdsectanta tdsecttanatdsectantatdsecttantanta tdsectsectanta tdtsecttanatantdsectttanatantadsectttanadxaxx sectttanaaxx cost sectπtπ sectattanaaxx πtπtantax Rxxaxxxf aCaxxlnaaxaxxdxaxx 2 32 2 2 3 3 32 3 23 33 32 2 3222 2 2 )( 8 )2( 8 )( 8 8 0 8 )2( 8 4 88 4 88 cos 1 |AB| , |AC|, || , BRt 4 88 2 1 2 1 2 1 2 1 )1( 4 4 ) ( 4 1 3 3 )1( ) ( )( )( , 01 , 22 ||)( ,) 22 ( }|{)( )0( )( 8 )2( 8 .42 22 4 2222222 22 4 22 4 22 22 4 2222 2 22 3 22 4 22 4 1 22 3 34224224 4 22 22 1 444 4 1 44 444 2444 3444 444 444 4 443222 3222 2222 222 22 4 2222222 , 则中,设在 联立①②得: ② 移项并整理得: ① 移项并整理的: 则可令 的定义域为被积函数证明: ∵ ∵ ∵ Ctantsectlndtt ++=∫ | | sec 87 :公式 - 23 - )( )( 2 )( 2 2 1 1 2)( 2 1 , )0( }0|{)( )0( .43 22 22 22 22 222 222 22 22 22 22 2 2 22 2 22 222 22 2 2222 22 22 2 1 22 2222 22 22 22 22 C x aaxlnaax C x aax lnaax C aax aax lnaaxdx x axaxt C at at lnatC at at ln a at dt at adtdt at aat dt at tdt at t at tdx x ax dt at ttdtatdx atxatttax xx x axxf aC x aaxlnaaxdx x ax + −+ ⋅++= + −+ ⋅++= + −+ −+⋅++=++= + − − ⋅+=+ + − ⋅⋅+= − += − +−= − = − ⋅ − = + ∴ − =⋅−=∴ −=≠≥=+ ≠+= >+ −+ ⋅++= + ∫ ∫∫∫ ∫∫∫ ∫ − 代入上式得:将 则且令 的定义域为被积函数证明: C)( 2 , 1 C)( , 0 2. C)( 0 1 |AB| , |AC|, || , BRt 1 1 1 )1( , 01 , 2 0 , ) ( ,) 2 0( , 0 1. }0|{)( )0( C)( .44 22 22 2 22 22 22 2 22 22 22 2 22 22 22 22 2222 2 22 22 22 22 2 22 2 22 2 22 2 22 22 22 2 22 ++++ + −= + ++++ + −= + < ++++ + −= + ∴>++ +−+++ + −= + + − ++ = + ∴ + === + =∴ +====∠ +−+= +=+= ⋅+=⋅+= +⋅=⋅= + ∴ = + ∴>=<<= + ==<<=> ≠ + = >++++ + −= + ∫ ∫ ∫ ∫ ∫∫∫∫ ∫∫∫∫ ∫∫∫ ∫ xaxln x axdx x ax xaxln x axdx x axx xaxln x axdx x axxax Clna xax ln x ax C x ax a xax lndx x ax a ax cost sect , a xtant , ax xsint axxaBCtABCΔ C sint tant sectln dsint tsin dtsectdt tsin costdtsect dt tsin tcos cost dtsectdt ttan sectdtsect dtttan ttan secttdt seca ttan a sectdx x ax ttan a sect x ax cost sectπt ttan a secta x ax tdt secatantaddx πttantaxx xx x axxf aaxxln x axdx x ax 1 1 1 22 2 2 2 2 2 2 2 222 2 得:综合讨论 同理可证得:时当 则中,设在 , 则可令时当 的定义域为被积函数证明: ∵ ∵ Ctantsectlndtt ++=∫ | | sec 87 :公式 C 2 1 21 22 + + − ⋅= −∫ ax axln aax dx :公式 - 24 - (七)含有 )0( 22 >− aax 的积分(45~58) 2 1 || || || 1|| || 1 . 2 1 Rt 2 0 ) 2 0( . 1 }{ 1 1 )0( 45 3 C|axx|lnC a |x|arsh |x| x ax dx, Caxxln C a axxln C axx ln Caxxln Caμμln aμ dμ ax dx μx,xμax,ax C|axx|ln | a axx|ln|ttantsec|ln ax dx a ax |BC| |AC|ttan, a x tcos tsec ax|AC|,x|AB|a|BC|,tBABCΔ C |tantsect|ln sectdtdt tanta tantsecta ax dx tantaaxπt tanta1tsecaax tantdtsectadxπtsectax,ax axax|x ax f(x) a C|axx|lnC a |x|arsh |x| x ax dx. 22 122 5 22 42 22 4224 22 4 22 2222 22 22 22 22 22 2 22 22222 22 22 122 +−+=+⋅= − +−−−= + −+− = + −+− =+−+−−= +−+−= − −= − −=−=>−−< +−+= −+ =+= − ∴ − ====∴ −====∠ ++= = ⋅ ⋅⋅ = − ∴ ⋅=−<<⋅=−=− ⋅⋅=<<⋅=> −<> − = >+−+=+⋅= − ∫ ∫∫ ∫ ∫ ∫∫ ∫ ,可写成综合讨论 可知由讨论 即时,令即当 则,中,可设在 , 则,可设时当 或的定义域为被积函数:证法 ∵ Cttantseclntdtsec ++=∫ || 87 :公式 - 25 - 2 1 || || || 1)( || 1 . 2 || . 1 }{ 1 2 )0( 45 C|axx|lnC a |x|arsh |x| x ax dx, Caxxln C a axxln C axx ln Caxxln Caμμln aμ dμ ax dx μx,xμax,ax Caxxln C1 a x a xlnC a xarch Ctdtdt shta shta ax dx shtdtadx,shtaatchaax a xarcht0)(tchtax,ax axax|x ax f(x) a C|axx|lnC a |x|arsh |x| x ax dx. 22 122 5 22 42 22 4224 22 4 22 2222 3 22 2 2 122 22222 22 22 122 +−+=+⋅= − +−−−= + −+− = + −+− =+−+−−= +−+−= − −= − −=−=>−−< +−+= + ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛+=+= +== ⋅ ⋅ = − ∴ ⋅=⋅=−=− =>⋅=> −<> − = >+−+=+⋅= − ∫ ∫∫ ∫ ∫∫ ∫ ,可写成综合讨论 可知由讨论 即时,令即当 则,可设时当 或的定义域为被积函数:证法 - 26 - C axa x ax dx, C axa x ax dxxμ C aμa μ aμ μd aμ μd ax dx μx,xμax,ax C axa x ax dx x axtsin ax|AC|,x|AB|a|BC|,tBABCΔ C tsina sintd tsina dt tsin tcos a dt tsin tcos tcosa dt ttan sect a dt ttana tantsecta ax dx ttanaaxtantπt ttanaax tantdtsectadxπtsectax,ax axax|x ax f(x) a C axa x ax dx. 2222 2222 2222 2222 2222 22 22 22 2222 22 2222 + −⋅ −= − + −⋅ −= − −= + −⋅ = − − − −= − ∴ −=−=>−−< + −⋅ −= − ∴ − =∴ −====∠ +−= = =⋅= = ⋅ ⋅⋅ = − ∴ ⋅=−><<⋅=− ⋅⋅=<<⋅=> −<> − = >+ −⋅ −= − ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ 23 23 23 33 23 2 22 222 2 2 32333 333333 3 23 )( 2 1 )( )()( 1 )()( . 2 )( Rt 1 11 111 1 )( )( , 0 2 0 )( ) 2 0( . 1 }{ )( 1 )0( )( 46 得:综合讨论 代入得:将 可知由讨论 即时,令即当 则,中,可设在 , 则,可设时当 或的定义域为被积函数:证明 ∵ )( 2 11 1 2 1 )()( 2 1 )( 2 1 )0( .47 2 1 122 222 1 22 1 Cax Cax axdax dxaxdx ax x aCaxdx ax x 22 22 22 22 22 22 +−= +− − ×= −−= −= − >+−= − − − − ∫ ∫∫ ∫ :证明 - 27 - 1 )( 2 1 1 )( 1 )( 1 )()( . 2 11 )( Rt 11 11 1 )( )( 2 0 )( ) 2 0( . 1 }{ )( )0( 1 )( 48 3 3 3 33 3 2 22 2 323 323333 3 3 C ax dx ax x, C ax dx ax xxμ C aμ μd aμ μ μd aμ μdx ax x μx,xμax,ax C ax C ax a a dx ax x ax atcot ax|AC|,x|AB|a|BC|,tBABCΔ Ctcot a tdtcsc a dt tsina dt ttan tsec a dttantsecta ttana sectdx ax x ttana sect ax xπt ttana secta ax x tantdtsectadxπtsectax,ax axax|x ax xf(x) a C ax dx ax x. 2222 2222 2222 2222 222222 22 22 22 2222 22 2222 + − −= − + − −= − −= + − −= − − = − ∴ −=−=>−−< + − −=+ − ⋅−= − ∴ − =∴ −====∠ +⋅−=−−= == ⋅⋅⋅ ⋅ = − ∴ ⋅ = − << ⋅ ⋅ = − ⋅⋅=<<⋅=> −<> − = >+ − −= − ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫ 得:综合讨论 代入得:将 可知由讨论 即时,令即当 则,中,可设在 , 则,可设时当 或的定义域为被积函数:证明 ∵ Caxxlnaaxxdx ax x Caxxlna ax dxa Caxxlnaaxxdxax dx ax adxax dx ax aax dx ax aaxdx ax x a Caxxlnaaxxdx ax x. 2222 22 22 22 22 22 22 22 22 22 22 22 2222 22 +−+⋅+−= − +∴ +−+⋅= − +−+⋅−−⋅=− − +−= − +−= − +− = − >+−+⋅+−= − ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫ 22 45)( 53)( 22 1 )( )0( 22 49 22 22 2 2222 2 2 22 22 ②得:由① 公式② 公式① 证明: ∵ - 28 - Caxxln ax xdx ax x , Caxxln ax x C xax lnaln ax xC xax xaxln ax x C xax xaxxaxln ax xdx ax x Caxxln ax xdx ax xxμ Caμμln aμ μμd aμ μ μd aμ μdx ax x μx,xμax,ax Caxxln ax xC a axxln ax xdx ax x a xtsec a axttan x axtsin ax|AC|,x|AB|a|BC|,tBABCΔ Ctsecttanln tsin C tcos tsinln tsin C tsin tsinln tsin C tsin tsinln tsin Ctsinlntsinln tsin tsind tsin tsind tsin tsind tsin tsind tsintsin tsind tsin tsind tsin tsind tsin tsind tsin tsind tsin tsind tsintsin tsind tsintsin dt tcostsin tcos dt tcostsin dt tsin tcos tcos dt ttan tsecdttantsecta ttana tsecdx ax x ttana tsec ax xπt ttana tseca ax x tantdtsectadxπtsectax,ax axax|x ax xf(x) a Caxxln ax xdx ax x. 22 2222 22 22 222222 22 22 22 2222 2222 22 2222 22 2222 2222 22 22 22 2222 2222 22 22 2222 22 22 2222 +−++ − −= − +−++ − −= + +− −+ − −=+ +− −− − − −= + +− +−−− − − −= − = +−+−− − −= − −= +−+− − = − − − −= − ∴ −=−=>−−< +−++ − −=+ −+ + − −= − ∴ = − = − =∴ −====∠ +++−=+−⋅ + +−= + − + +−=+ − + +−= +−−++−= − − −+ + += − − + += − −= − += − += − = ⋅ = ⋅ =⋅==⋅⋅⋅ ⋅ = − ∴ ⋅ = − ∴<< ⋅ ⋅ = − ⋅⋅=<<⋅=> −<> − = >+−++ − −= − ∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫∫ ∫∫ ∫∫∫∫ ∫∫∫ ∫∫ ∫∫∫ ∫ )( 2 1 1 2 )( ))(( )( )( )( 1 )()( . 2 )( , , Rt 1 1)(1( 2 11 1 1( 2 11 1 1 2 11 1 2 1 1 2 11 )1( 1 1 2 1)1( 1 1 2 1 1 ) 1 1 1 1( 2 1 1 1 1 1 1 1 1 ) 1 1 1( )(1 1 11 )( )( 2 0 )( ) 2 0( . 1 }{ )( )0( )( 50 3 2 2 3 2 3 2 3 2 3 2 3 2 23 2 212 2 12 2 1 1 2 2 2222 222222 22 2 32 3 3 2 3 2 3 2 3 2 33 22 3 2 3 2 3 2 得:综合讨论 代入得:将 可知由讨论 即时,令即当 则,中,可设在 ) ) , 则,可设时当 或的定义域为被积函数:证明 ∵ blognblog a n a =提示: - 29 - || 1 2 1 1 1 1 . 2 1 1 1 2 0 . 1 }{ 1 1 )0( || 1 51 1 2 22 C x aarccos aaxx dx, C x aarccos a C μ aarccos aaμμ dμ axx dx μx,xμax,ax C x aarccos aaxx dx x aarccost, x acostsect,ax Ct a dt a dt tantsecta tanttseca axx dx tdtantsectadx ,tantsecta1tsectsecaaxx )πt(sectax,ax axax|x axx f(x) a C x aarccos aaxx dx. 22 22222 22 22 222 22 22 +⋅= − + − ⋅= +⋅= − = − −=−=>−−< +⋅= − ∴ =∴=∴⋅= += = ⋅ ⋅⋅ = − ∴ ⋅⋅=⋅=−⋅=− <<⋅=> −<> − = >+⋅= − ∫ ∫∫ ∫ ∫ ∫∫ ∫ ,可写成综合讨论 可知由讨论 即时,令即当 则,可设时当 或的定义域为被积函数:证法 ∵ - 30 - 1 2 1 1 1 1 . 2 1) ( 1 ) ( ,,) ( Rt 1 ) ( 1 1 111 11 )0( . 1 }{ 1 2 )0( || ·1 51 C |x| a arccos aaxx dx, C x aarccos a C μ aarccos aaμμ dμ axx dx μx,xμax,ax C x a arccos a Cshtarctan aaxx dx C x aarccos)arctan(sht x ashtarctan coscosy x a |AB| |BC|cosy x|BC||AC||AB|ax|AC|shtarctany a|BC|,yB, a axshttanyABCΔ a axtch sht , a xcht cht,ax Cshtarctan a dsht tsha dt tch cht a dt chta dt shtchta shta axx dx dt shtadx ,shtchtashtachtaaxx ttchax,ax axax|x axx f(x) a C x aarccos aaxx dx. 22 22222 22 2222 22 22 2 22 22 222 22 22 +⋅= − + − ⋅= +⋅= − = − −=−=>−−< +⋅=+⋅= − ∴ +=∴ == ==∴ =+=−==∴ ==∠ − == − =−=∴=∴⋅= +⋅= + == ⋅= ⋅⋅ ⋅ = − ∴ ⋅=⋅=⋅⋅⋅=− <⋅=> −<> − = >+= − ∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ,可写成综合讨论 可知由讨论 即时,令即当 即 中,设在 则,可设时当 或的定义域为被积函数:证法 ∵ C a xarctan aax dx += +∫ 1 19 22:公式 - 31 - 2 1 1 . 2 0 1 1 )1(11 1 , 1 1 )1( 2 11 1 2 1 )1()1( 2 1 )1( 2 1 1 )1( 1 1 1 , 1 )10( 1 . 1 }{ 1 )0( 52 22 22 222 22 2 22 22 22 2 22 2 1122 2 222 1 22 2 22 1 22 22 222 3 2 22 3 22 2 22 C xa ax axx dx, C xa ax axx dxxμ C μa aμ aμμ μd axx dx μx,xμax,ax C xa ax axx dxax C x ax a C x ax a C x a aaxx dx x t t x C a ta Cta a tadta a dttadt ta t dt tta t axx dx ta t axx dt t dx a t t x,ax axax|x axx f(x) a C xa ax axx dx. 22 22 22 22 22 2222 22 22 22 22 22 22 22 22 22 22 + − = − + − = − −= + − −= − −= − −=−=>−−< + − = − ∴>> + − ⋅= + − ⋅=+−⋅= − == + − = +−⋅ − ⋅=−−= −−= − −= −⋅ − = − ∴ − = − −=<<=> −<> − = >+ − = − ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫ −− − 得:综合讨论 代入上式得:将 可知由讨论 即时,令即当 代入上式得:即将 则,可设时当 或的定义域为被积函数:证明 ∵ - 32 - Caxxlnaaxxdxax , tπsectaxax Caxxlnaaxx a xaxlna a x a axa tsecdttanadxax a xtsec a axttan ax|AC|,x|AB|a|BC|,tBABCΔ ttantseclnatsecttanatsecdttana tsecdttanattantseclnatsecttana tsecdttanadttsecatsecttana dtttantsecadttsecatsecttana dtttantsecatsecttana dttsecatsecttana ttandtsecatsecttana tsecdttanasectadttanadxax ttanaaxπt ttanaaxπtsectax,ax axax|xaxf(x) a Caxxlnaaxxdxax. 222222 2222 2222 22 22 22 22 22 22 22 222222 +−+⋅−−==− <<−⋅=−< +−+⋅−−= + +− ⋅−⋅ − ⋅= =−∴ = − =∴ −====∠ ++⋅−⋅⋅= −+⋅−⋅⋅= −−⋅⋅= −−⋅⋅= +−⋅⋅= −⋅⋅= −⋅⋅= =⋅⋅=−∴ ⋅=−∴<< ⋅=−<<⋅=> −<>−= >+−+⋅−−=− ∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫∫ ∫ 22 2 1 )0 2 ( . 2 22 C 22 , Rt C 22 )(1 )( 2 0 ) 2 0( . 1 }{ )0( 22 53 2 2 1 22 2 1 22 2 222 222 2222 222 322 22 2 2 得:综合讨论 同理可证时,可设当 则,中,可设在 移项并整理得: , 则,可设时当 或的定义域为被积函数:证明 ∵ - 33 - Caxxlnaaxaxx Caxxlnaaxaxaxxax Caxxlnaaxaxaxxdxax Caxxlnaaxxxdax xdaxaaxxdxax xdaxaxdaxaxx xdaxaaxaxx xdaxxaxx xdaxxxaxx axxdaxxdxax aCaxxlnaaxaxxdxax. +−+⋅⋅+−−⋅= +−+⋅⋅+−⋅⋅−−−= +−+⋅⋅+−⋅⋅−−=− +−+⋅−−=− −−−⋅=− −−−−−⋅= −+−−−⋅= −−−⋅= −⋅⋅⋅−−⋅= −−−⋅=− >+−+⋅⋅+−−⋅=− ∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ 8 3)52( 8 8 3 8 3) 44 ( 8 3 8 3)( 4 )( 53) ( 22 )( )( 4 3)( 4 )( )(3 )(3)( ))((3)( )(3)( )()2( 2 3)( )( )( )( )0( 8 3)52( 8 )( 54 2242222 22422222 23 2242222 3 22322 22 2 222 1 22 2 1 22 2 2 3 22322 2 1 2222 3 222 3 22 2 1 222222 3 22 2 1 2222 3 22 2 1 222 3 22 2 3 222 3 22322 2242222322 联立①②得: ②公式又 ①移项并整理得: 证明: C )( 3 1 )( 2 11 1 2 1 )( )( 2 1 2 1 )0( C )( 3 1 55 322 2 1122 222 1 22 22222 32222 +−= +−⋅ + ×= −−= −=− >+−=− + ∫ ∫∫ ∫ ax Cax axdax dxaxdxaxx aaxdxaxx. 证明: - 34 - Caxxlnaaxaxxdxaxx, Caxxlnaaxaxxdxaxxxμ Caμμlnaaμ)aμ(μ μdaμμdxaxx μx,xμax,ax Caxxlnaaxaxx Caxxlnaaxxaaxaxx C a axxlna a x a axaax a ax a xadtttandtseca a x tcos sect , a axtant axx,a|BC|,tABCΔ Ctantsectlnatantsectasectttanadtttandtseca Ctantsectlntantsect dtsecttantsectsectdtant sectdtant dtsecttantsect dtsectttan dtsecttantsect sectdtttantantsect tdtsectantsecttantdsecttantsectsectdtant tsecdttanattantsecadtttandtseca tsecdttanadttsecttanattantseca tsecdttanatsectdsecttanattantseca tsecdtsecttanattantseca tsecdttanattantseca ttandsectadtttantsecsecta dtttandtsecasecta d tanttsecadxaxx tanttsecaaxxttanπt tant atsecaaxx ,πtsectaxax axax|xaxx)x(f aCaxxlnaaxaxxdxaxx. 23 323 2 2 3 23 2 232 2 2 +−+⋅−−−⋅=− +−+⋅−−−⋅=−−= +−+−⋅+−−⋅ − = −−=− −=−=>−−< +−+⋅−−−⋅= +−+⋅−−⋅+−⋅−⋅= + −+ ⋅−⋅ − ⋅+−⋅ − ⋅⋅=∴ == − =∴ −====∠ ++−⋅+⋅= ++−⋅⋅= −⋅⋅= −−⋅= −−⋅= ⋅+−⋅= −⋅=−⋅= +⋅⋅= +⋅−⋅⋅= +⋅−⋅⋅= −−⋅⋅= −⋅⋅= =⋅⋅⋅= =⋅=−∴ ⋅=−∴><< =−<<⋅=> −<>−= >+−+⋅−−−⋅=− ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫∫ ∫ 8 )2( 8 21 8 )2( 8 8 2 8 1 2. 8 )2( 8 88 )( 4 884 1 |AC| , |AB| BRt 884 2 1 2 1 2 1 2 1 )1( 44 3 33 3 33 )1( 33 33 3 3 3 ) ( , 0 , 2 0 || ) 2 0( 1. }{ )0( 8 )2( 8 56 22 4 2222222 22 4 2222222 22 4 2222 222222 22 4 2222 2 22 4 22 2 2222 1 224224 22 3 224 4 22 22 1 444 4 1 4 3 4 4 4 32 4 3 4 4 2 4 3 4 2 4 3 4 3 4 3 4 3 4 2 4 43222 3222 2222 222 22 4 2222222 得:综合讨论 代入上式得:将 得:由讨论 则时,令即当 则中,设在 将③式代入②式得: ③ 移项并整理得: 又 ②移项并整理得: ① 则可令时,当 或的定义域为被积函数证明: ∵ - 35 - C x aarccosaaxdx x ax, C x a arccosaax C μ a arccosaaμμd μ aμ dx x ax μx,xμax,ax C x a arccosaax Ctatantadx x ax a ax |BC| |AC|tant ax|AC|x|AB|a,tABCΔ x aarccost , x acost sect,ax Ctatanta dtdt tcos adt tcos tcosadt tcos tsina tdttanadt secta tantsectatantadx x ax t d tantsectadx , secta tanta x ax ) 2 πt(0 sectax,ax axax|x x axf(x) a C x aarccosaaxdx x ax. 22 22 22 22 2222 22 22 22 22 22 2 2 2 2 22 22 22 22 22 +⋅−−= − + − ⋅−−= +⋅−−= − = − −=−=>−−< +⋅−−= +⋅−⋅= − ∴ − ==∴ −====∠ =∴=∴⋅= +⋅−⋅= −= − == ⋅= ⋅ ⋅⋅⋅⋅ = − ∴ ⋅⋅= ⋅ ⋅ = − <<⋅=> −<> − = >+⋅−−= − ∫ ∫∫ ∫ ∫∫∫∫ ∫ ∫∫ ∫ || 2 1 1 . 2 , |BC|BRt 11 , . 1 }{ 1 )0( || 57 ,可写成:综合讨论 可知由讨论 即时,令即当 ,则中,设在 则 可设时当 或的定义域为被积函数:证法 ∵ - 36 - chttsh shtcht tshtch 22 =′ =′ =− )( )( 1 :提示 C a xarctan aax dx 22 +⋅= +∫ 1 19 :公式 2 1 1 . 2 ) ( ) ( ,,) ( Rt 1 )( 1 1 1 0 . 1 }{ 2 )0( 57 C |x| aarccosaaxdx x ax, C x aarccosaax C μ aarccosaaμdμ μ aμ dx x ax μx,xμax,ax C x aarccosaaxdx x ax x aarccosshtarctan x ashtarctan coscosy x a |AB| |BC|cosy x|BC||AC||AB|ax|AC|shtarctany a|BC|,yB, a axshttanyABCΔ a axtch sht , a xcht cht,ax C shtarctanashta dsht tsh achtdta dt tch chtachtdtadt cht tcha dt cht tshadt shta cht shtdx x ax dt shtadx , cht sht chta shta x ax )t(tchax,ax axax|x x axf(x) a C |x| aarccosaaxdx x ax. 22 22 22 22 2222 22 22 2222 22 22 2 2 2 2 222 22 22 22 22 +⋅−−= − + − ⋅−−= +⋅−−= − = − −=−=>−−< +⋅−−= − ∴ =∴ == ==∴ =+=−==∴ ==∠ − == − =−=∴=∴⋅= +⋅−⋅= + −= −= − = =⋅⋅= − ∴ ⋅== ⋅ ⋅ = − <⋅=> −<> − = >+⋅−−= − ∫ ∫∫ ∫ ∫∫ ∫∫∫ ∫∫∫ ∫ ,可写成:综合讨论 可知由讨论 即时,令即当 即 中,设在 则 ,可设时当 或的定义域为被积函数:证法 ∵ - 37 - (八)含有 )0( 22 >− axa 的积分(59~72) Caxxln ax dx +−+= − ∫ 45 22 22 :公式 C a xarcsin xa dx a xarcsinttsinax Ct dt dttcosa tcosaxa dx tcosaxa tcos ,πtπ tcosaxa dttcosadxπtπsintax axa|x xa )x(f a C a xarcsin xa dx. 22 22 += − ∴ =∴⋅= += = ⋅⋅ ⋅ = − ∴ ⋅ = − ∴><<− ⋅ = − ⋅=<<−⋅=∴ <<− − = >+= − ∫ ∫ ∫∫ ∫ 22 22 22 22 1 110 22 11 , ) 22 ( }{ 1 )0( 59 ∵ ∵ 则,可设 的定义域为被积函数:证明 Caxxln x ax dx axx ax dxaxx xx ax axd xx ax x daxdx x ax aCaxxln x axdx x ax. +−++ − −= − + − −= −⋅⋅⋅+ − −= −+ − −= −−= − >+−++ − −= − ∫ ∫ ∫ ∫∫ ∫ − 1 )(2 2 11 1 1 )0( 58 22 22 22 22 2 1 22 22 22 22 22 2 22 22 22 2 22 证明: - 38 - C xaa x xa dx xa xttan xa|BC|,x|AC|a|AB|,tBABCΔ Cttan a dttsec a dt tcosa dttcosa tcosaxa dx tcosaxa tcos ,πtπ tcosaxa dttcosadxπtπsintax axa|x xa )x(f a C xaa x xa dx. 22 22 + −⋅ = − ∴ − =∴ −====∠ +⋅= ⋅= ⋅ = ⋅⋅ ⋅ = − ∴ ⋅ = − ∴><<− ⋅ = − ⋅=<<−⋅=∴ <<− − = >+ −⋅ = − ∫ ∫ ∫ ∫∫ ∫ 222322 2 2 2 22 33322 33322 33322 322 222322 )( Rt 1 1 1 1 )( 1 )( 10 22 1 )( 1 , ) 22 ( }{ )( 1 )0( )( 60 则,中,设在 则,可设 的定义域为被积函数:证明 ∵ C )( 2 11 1 2 1 )( )( 2 1 )( 2 1 )0( C .61 22 2 112 222 1 22 22 1 22 22 22 22 +−−= +−⋅ − ×−= −−−= −= − >+−−= − − − − ∫ ∫∫ ∫ xa Cxa xadxa dxxadx xa x axadx xa x 证明: - 39 - C 1 )( 2 31 1 2 1 )( )( 2 1 )( 2 1 )( )0( C 1 )( .62 22 2 3122 222 3 22 22 3 22 322 22322 + − = +−⋅ − ×−= −−−= −= − >+ − = − − − − ∫ ∫∫ ∫ xa Cxa xadxa dxxadx xa x a xa dx xa x 证明: C a xarcsinaxaxdx xa x a xa , cost a xsint xaBCxACaABtBABCΔ Ccostsintata Csin2tata tdtadta dtta dttsina dtta cost tsinadx xa x cost tsina xa xt πtπ cost a tsina xa xdttadxπtπsint ax axax xa xxf 0aC a xarcsinaxaxdx xa x 22 2 2 2 22 +⋅+−−= − ∴ − ==∴ −====∠ +⋅⋅−⋅= +⋅−⋅= −= − = = ⋅⋅ ⋅ = − ∴ ⋅ = − ∴><<− ⋅ ⋅ = − ⋅=<<−⋅=∴ <<− − = >+⋅+−−= − ∫ ∫∫ ∫ ∫ ∫∫ ∫ 22 ||, || ||, Rt 22 42 )2( 2cos 42 2 2cos1 cos 0cos , 22 , cos ) 22 ( }|{ )( )( 22 .63 2 22 22 2 22 22 22 22 2 2 22 2 22 2 22 2 22 2 2 22 22 2 则,中,设在 则,可设 的定义域为被积函数:证明 ∵ costsint sin2t t2sin tsintcoscos2t 2 22 ⋅⋅= −= −= 2 1 提示: - 40 - C a xarcsin xa xdx xa x xa xtant xaBCxACaABtBABCΔ Cttant dttantd dtdt tcos dt tcos tcos dt tcos tsin dtta tcosa tsindx xa x tcosa tsin xa xt πtπ t cos a tsina xa xdttadxπtπsint ax axax xa xxf 0aC a xarcsin xa xdx xa x 22 2 2 2 2 2 2 2 22 +− − = − ∴ − =∴ −====∠ +−= −= −= − = = ⋅⋅ ⋅ = − ∴ ⋅ = − ∴><<− ⋅ ⋅ = − ⋅=<<−⋅=∴ <<− − = >+− − = − ∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫ 22322 2 22 322 2 3322 2 33322 2 322 2 22322 2 )( ||, || ||, Rt 1 1 cos )( 0cos , 22 )( , cos ) 22 ( }|{ )( )( )( )( .64 则,中,设在 则,可设 的定义域为被积函数:证明 ∵ - 41 - 1 2 1 ), 2 0( 0 2 1 0 1 )1( 1 1 1 , Rt 1 1 1 1 2 1 )1( 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 2 11 1 1 2 1 1 1 1 1 2 1 1 11 1 11 1 0 0 2 )0 2 ( 0 1. }0{ 1 )( 1 65 22 22 22 22 3 2222 2 2 2 2 12 2 1 1 2 222 22222 22 22 22 C x xaaln axax dx, πtsint axax. C x xaaln axax dx xaa C x xaaln a C x xaaln a C x axaln axax dx x a sint csct x xacott xa|BC|,x|AC|a|AB|,tBABCΔ Ccsctcottln a C sint costln a C tsin )cost(ln a C tcos )cost(ln a C cost costln a Ccostln a costln a )tcos(d costa )t(cosd costa tcosd) costcost ( a tcosd tcosa dt tsin sint a dt sinta dttcosa tcossintaxax dx tcossintaxax tcos ,tπ |tcosa|sintaxax dttcosadxtπsint axxa xaxa|x xax )x(f 0a C x xaaln axax dx. 22 22 2222 22 22 2 2 + −− ⋅= − <<⋅=<< + −− ⋅= − ∴ >−− + −− ⋅= +−⋅ −− ⋅=+ −− ⋅= − ∴ == − =∴ −====∠ +−⋅= + − ⋅= + − ⋅= +−⋅ − − ⋅= + + − ⋅= +−⋅++⋅−= − − ++ + −= − + + −= − −= = = ⋅⋅ ⋅⋅ = − ∴ ⋅⋅=−∴><<−⋅⋅⋅=− ⋅=<<−⋅=<<− ≠<<− − = >+ −− ⋅= − ∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ 得:综合讨论 同理可证可设时,当 则,中,设在 则,可设时,当 且的定义域为被积函数:证明 ∵ ∵ - 42 - C xa xa xax dx πtsint axax C xa xa xax dx x xacott xaBCxACaABtBABCΔ Ccott a dttcsc a dt tsina dtta costtsinaxax dx costtsinaxax t πtπ tatsinaxax dttadxtπsint axxa xaxax xax xf 0aC xa xa xax dx 2 23 23 2 + − −= − <<⋅=<< + − −= − ∴ − =∴ −====∠ +⋅−= −−= = ⋅⋅ ⋅⋅ = − ∴ ⋅⋅ = − ∴><<− ⋅ ⋅ ⋅ = − ⋅=<<−⋅=<<− ≠<<− − = >+ − −= − ∫ ∫ ∫ ∫ ∫∫ ∫ 2 22 222 2 22 222 22 22 2 2 2 2 222 222 2222 222 2 22 222 2 , 1 ), 2 0( 0 .2 ||, || ||, Rt 1 1 11 cos 1 11 0cos , 22 cos 111 , cos )0 2 ( 0 1. }0|{ 1)( )( .66 得:综合讨论 同理可证可设时,当 则,中,设在 则,可设时,当 且的定义域为被积函数:证明 ∵ - 43 - C a xarcsinaxax C a x a xaa a xarcsinadxxa a xa , cost a xsint xa|BC|,x|AC|a|AB|,tBABCΔ Ccostsintatadxxa costsintatacostsintadtadxxa dttsinacostsinta d costsintacostsinta sintdcosta dttcosadxxa dttsinadta dt)tsin(a dttcosa dttcosatcosadxxa tcosaxa tcos ,πtπ tcosaxadttcosadxπtπsint ax axa|xxa)x(f 0a C a xarcsinaxaxdxxa. 22 22 22 22 2222 22 2 2 2 2 2 +⋅+−= +⋅ − ⋅+⋅=−∴ − ==∴ −====∠ +⋅⋅+=−∴ ⋅⋅+=⋅⋅+=−+ +⋅⋅= −⋅⋅= = =− −= −= = ⋅⋅⋅=−∴ ⋅=−∴><<− ⋅=−⋅=<<−⋅=∴ <<−−= >+⋅+−=− ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫ 22 22 Rt 22 2 1 0 22 , ) 22 ( }{ )( 22 67 2 22 22 22 22 22 2 2 2 222 22 2 2 22 22 22 22 2 2222 则,中,设在 ②得:由① ② 又 ① 则,可设 的定义域为被积函数:证明 ∵ - 44 - C a xarcsinaxaxax C a xarcsinaxaaxxaxxa C a xarcsinaxaaxxaxdxxa C a xarcsinaxaxxdxa xdxaaxaxdxxa xdxaaxdxaxax xdxaaaxxax xdxaxxax xdxaxxxax xaxdxaxdxxa aC a xarcsinaxaxaxdxxa +⋅⋅+−−⋅= +⋅⋅+−⋅⋅+−−= +⋅⋅+−⋅⋅+−=− +⋅+−=− −+−⋅=− −+−−−⋅= −+−+−⋅= −+−⋅= −⋅−⋅⋅−−⋅= −−−⋅=− >+⋅⋅+−−⋅=− ∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ 42222 422222 32 42222 3 22322 2 222 1 22 2 1 22 2 2 3 22322 2 1 2222 3 222 3 22 2 1 222222 3 22 2 1 2222 3 22 2 1 222 3 22 2 3 222 3 22322 42222322 8 3)25( 8 8 3 8 3) 44 ( 8 3 8 3)( 4 )( 67) ( 22 )( )( 4 3)( 4 )( )(3 )(3)( ))((3)( )(3)( )()2( 2 3)( )( )( )( )0( 8 3)25( 8 )( .68 联立①②得: ②公式又 ①移项并整理得: 证明: Cxa Ctsinadxxax a xa a xatsin a x sintπtπsint a x Ctsina Ctcosa dcosttcosa sint dttadttacostsintadxxax cost sintaxaxt πtπ tataxaxdttadxπtπsint ax axaxxaxxf aCxadxxax 2 2 2 32 +−−= +−−=−∴ − = − =−∴ =∴<<−⋅= +−−= +−=−= ⋅=⋅⋅⋅⋅=−∴ ⋅⋅=−∴><<− ⋅⋅⋅=−⋅=<<−⋅=∴ <<−−= >+−−=− ∫ ∫ ∫∫∫ ∫ 322 2 33 22 3 322 2 3 2 22 2 3 2 33 3 3 23222 222 22 22 32222 )( 3 1 )1( 3 )( )()(1 , ) 22 ( )1( 3 3 cos cos 0cos , 22 |cos|sin , cos ) 22 ( }|{ )( )0( )( 3 1 .69 ∵ ∵ 则,可设 的定义域为被积函数:证明 - 45 - C a xarcsinaxaaxx C a xarcsina a x a xaa a x a xaadxxax a x sint , a xacost xaxaBtABCΔ tacostsintatsintadxxax tcostsint dtcostsintcostdsint dttsincostdsint dttsindtcostsint dttsin costsint dttcostsint sintdcostcostsintcostdsint d costsintatsinta dttcostsinadxxax dttcostsinad costsintatsinta d costtcossintad costsintatsinta d costtcossintatsinta t d costsinatsinta tsindtcosa dttcostcostsina dttcostsinasinta d costtsinadxxax costtsinaxaxtπtπ cost atsinaxax πtπsintax axaxxaxxf aC a xarcsinaxaaxxdxxax 2 2 2 2 22 2 2 2 3 3 2 222 2 2 +⋅+−−⋅= +⋅+⋅ − ⋅−⋅ − ⋅=−∴ = − =∴ −====∠ +⋅−⋅⋅−⋅⋅=− +⋅−⋅⋅= −⋅⋅= −= +−⋅= −−⋅= −⋅= −⋅= −⋅⋅= ⋅=− ⋅+−⋅⋅= ⋅+−⋅⋅= −⋅−⋅⋅= −⋅⋅= = ⋅⋅⋅= ⋅=⋅⋅=−∴ ⋅⋅=−∴><<− ⋅⋅=−<<−⋅=∴ <<−−= >+⋅+−−⋅=− ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫∫ ∫ 8 )2( 8 884 |BC| , |AC|, |A| , BRt C 8 8 cos 4 C 2 1 2 1 2 1 2 1 ) 1( cos 4 cos 4 3 3 cos 3 3 3 cos 3 )(1 3 cos 3 3 cos 3 3 3 3 )( , 0cos , 22 || ,) 22 ( }|{)( )0( 8 )2( 8 .70 4 2222 4224 3 3224 222 22 22 44 3 4 222 1 4 3 4 4222 2 44 3 4 44 3 4 4 3 4 4 3 4 4 4 43222 3222 2222 222 4 2222222 则中,设在 联立①④得: ④ 联立②③得: ③又 ② ① 移项并整理得: 则可令 的定义域为被积函数证明: ∵ ∵ ∵ - 46 - 2 , 1 ), 2 0( 0 .2 0 1 )1( , 1 , ||, || ||, Rt cos cos 1 cos )1( 2 cos )1( 1 )1( 2 cos 1 1 2 cos 1 2 1 2 )1( 1 1 2 )1(cos 1 1 2 cos) 1 1 1 1( 2 1 1 1 1 cos coscos cos 0cos , 0 2 |cos| cos )0 2 ( 0 1. }0|{ 1)( )( .71 22 22 22 22 22 22 22 3 2222 2 2222 2 222222 2222 22 2 2 2 2 12 2 1 1 2 222 2222 22 22 22 22 C x xaalnaxadx x xa πtsint axax C x xaalnaxadx x xa xaa C a xaa x xaaln a C a xaa x xaalna C a xaa x axalnadx x xa a xacost x a sint csct x xacott xaBCxACaABtBABCΔ Ctacsctcottlna Cta sint costlna Cta tsin costlna Cta tcos costlna Cta cost costlna Ctacostlnacostlna dtsintacostd cost atd cost a dtsintatd costcost a dtsinta dcost tcos adtsintadt tsin sinta dtsintadt sint adt sint tsina dt sint tadtta sint tdx x xa sint t x xat tπ sinta ta x xa dttadxtπsint axxa xaxax xax xf 0aC x xaalnaxadx x xa 2 2 2 + −− ⋅+−= − <<⋅=<< + −− ⋅+−= − ∴ >−− + − ⋅+ −− ⋅= + − ⋅+−⋅ −− ⋅= + − ⋅+ −− ⋅= − ∴ − === − =∴ −====∠ +⋅+−⋅= +⋅+ − ⋅= +⋅+ − ⋅= +⋅+−⋅ − − ⋅= +⋅+ + − ⋅= +⋅+−⋅++⋅−= −− − ++ + −= − − + + −= − − −=−= −= − = =⋅⋅= − ∴ = − ∴><<− ⋅ ⋅ = − ⋅=<<−⋅=<<− ≠<<− − = >+ −− ⋅+−= − ∫ ∫ ∫ ∫∫∫ ∫∫ ∫∫∫∫ ∫∫∫ ∫∫∫ ∫ 得:综合讨论 同理可证可设时,当 则,中,设在 则,可设时,当 且的定义域为被积函数:证明 ∵ ∵ - 47 - C a xarcsin x xadx x xa πtsint axax C a xarcsin x xadx x xa x xacott xaBCxACaABtBABCΔ Ctcott dttdtcsc dt tsin tsin dt tsin tcos dtta tsina tdx x xa tsina t x xat tπ tsina ta x xadttadxtπsint axxa xaxax x xaxf 0aC a xarcsin x xadx x xa 2 2 2 2 2 2 2 2 +− − −= − <<⋅=<< +− − −= − ∴ − =∴ −====∠ +−−= −= − = = ⋅⋅ ⋅ = − ∴ ⋅ = − ∴><<− ⋅ ⋅ = − ⋅=<<−⋅=<<− ≠<<− − = >+− − −= − ∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ 22 2 22 22 2 22 22 22 2 22 2 22 22 22 2 22 22 2 22 2 , 1 ), 2 0( 0 .2 ||, || ||, Rt 1 cos cos cos 0cos , 0 2 cos , cos )0 2 ( 0 1. }0|{ )( )( .72 得:综合讨论 同理可证可设时,当 则,中,设在 则,可设时,当 且的定义域为被积函数:证明 ∵ - 48 - (九)含有 )0( 2 >++± acbxa 的积分(73~78) C22 1 )(42 1 )()2(2 1 )2( )()2( 11 )2( )()2( 1 2 2 )()2( 12 ])()2[( 4 1 ]4)2[( 4 1 0Δ 0 01 )0( C22 1 . 73 2 2 22 22 22 222 22 222 2 2 2 2 +++++⋅= +++⋅++⋅= +−−+++⋅= + −−+ = + −−+ = −−+ = ++ ∴ −−+= −++=++ >−=∴> >++ ++ = >+++++⋅= ++ ∫ ∫ ∫∫ ∫ cbxaxabaxln a C cbxaxabaxln a C 4acbbaxbaxln a baxd 4acbbaxa baxd 4acbbaxa a dx 4acbbax a cbxax dx 4acbbax a bacbax a cbxax 4acba cbxax cbxax f(x) a cbxaxabaxln acbxax dx 2 2 2 2 2 2 ∵ ∵ 恒成立成立,则若被积函数证明: C cbxaxabaxln a b4accbxax a bax C cbxaxabaxln a b4accbxaxabax a C 4acbbaxbaxln a b4accbxaxabax a 4acbbaxbaxln 4acb4acbbaxbax aa baxd4acbbax aa dx4acbbax a dxcbxax 4acbbax a bacbax a cbxax 4acba cbxaxcbxaxf(x) a cbxaxabaxln a baccbxax a baxdxcbxax 2 2 2 2 2 2 2 2 2 2 2 +++++⋅ − +++⋅ + = +++⋅++⋅ − +++⋅ + ⋅= +−−+++⋅ − +++⋅ + ⋅= ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −−+++⋅ − −−−+ + ⋅ ⋅ = +−−+ ⋅ = −−+=++∴ −−+= −++=++ >−=∴> >++++= >+++++⋅ − +++ + =++ ∫ ∫∫ ∫ 2 3 2 2 3 2 3 22 3 2 3 2222 22 222 22 222 22 2 3 2 22 22 84 2 )(42 8 2 2 2 4 1 )()2(2 8 2 2 2 4 1 )()2(2 2 )()2( 2 2 4 1 )2()()2( 22 1 )()2( 2 1 ])()2[( 4 1 ]4)2[( 4 1 0Δ 0 0 )0( C22 8 4 4 2 .74 ∵ ∵ 恒成立成立,则若被积函数证明: Caxxlnaaxxdxax 222222 +−+⋅−−=−∫ 22 53 2 :公式 C|axx|ln ax dx 22 22 +−+= − ∫ 45:公式 - 49 - ( ) ( ) C22 2 1 22 2 )73 ( 22 1 2 1 2 1 2 1 1 2 )( 2 1 1 2 21 2 1 22 21 )2()( )0( C22 2 1 .75 2 3 2 2 1 2 3 1 2 2 2 2 2 22 1 2 22 22 2 2 3 2 2 +++++⋅−++= ++ ∴ +++++⋅= +++++⋅⋅= ++ ++ −++= ++ −++++= ++ −+⋅ ++ =∴ ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + ⋅ ++++ ∴ +=++ >+++++⋅−++= ++ ∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ − cbxaxabaxln a bcbxax a dx cbxax x C cbxaxabaxln a b C cbxaxabaxln aa bdx cbxaxa b dx cbxaxa bcbxax a dx cbxaxa bcbxaxdcbxax a dx cbxaxa bdxbax cbxaxa dx a b a bax cbxax dx cbxax x dxbaxcbxaxd a cbxaxabaxln a bcbxax a dx cbxax x 公式又 上式 变换成可将 证明:∵ C21 )2()( 12 4 )2( 4 ])2([ 4 1 0Δ 0 01 )0( C21 .67 222 2 222 2 2 2 + + − ⋅= −−+ = −+ ∴ −−+= +−−=−+ >+=∴> >−+ −+ = >+ + − ⋅= −+ ∫∫ ∫ 4acb baxarcsin a dx bax4acb a axbxc dx a bax a 4acb cbaxb a axbxc 4acba axbxc axbxc f(x) a 4acb baxarcsin aaxbxc dx 2 2 2 2 2 ∵ ∵ 有解成立,则若被积函数证明: 有误原题: C21 2 + + − ⋅−= −+ ∫ 4acb baxarcisn aaxbxc dx 2 - 50 - C2 88 2 2 8 )(4 8 2 2 2 )2()( 2 2 4 1 )2( )2()( 22 1 )2()( 2 1 4 )2( 4 ])2([ 4 1 0Δ 0 0 )0( C2 88 2 .77 3 2 3 2 3 22 3 22 222 2 222 22 3 22 + + − ⋅ + +−+ − = + + − ⋅ + +−+⋅ − = +⎥ ⎦ ⎤ ⎢ ⎣ ⎡ + −⋅++−−+−= −−−+ ⋅ = −−+=−+∴ − − + = +−−=−+ ≥+=∴> ≥−+−+= >+ + − ⋅ + +−+ − =−+ ∫ ∫∫ ∫ 4acb baxarcsin a 4acbaxbxc a bax C 4acb baxarcsin a 4acbaxbxca a bax C 4acb baxarcsin4acbbax4acbbax a baxdbax4acb aa dxbax4acb a dxaxbxc a bax a 4acb cbaxb a axbxc 4acba axbxcaxbxcf(x) a 4acb baxarcsin a 4acbaxbxc a baxdxaxbxc 2 2 2 2 2 2 2 2 2 2 2 2 2 ∵ ∵ 有解成立,则若被积函数证明: 22 67 2 2222 C a xarcsinaxaxdxxa +⋅+−=−∫:公式 [ ] C2 2 1 2 2 )(4 2 1 2 2 )2()( 2 1 )2( )2()( 1 2 )2( )2()( 2 2 1 )2( )2()( 2 2 1 2 12 )2()( 2 )2( 4 1 ])2([ 4 1 0Δ 0 0 )0( C2 2 1 .87 3 2 3 2 3 3 22 3 223223 22 222 2 222 2 2 3 2 2 + + − ⋅+−+−= + + − ⋅+−+⋅−= + + − ⋅+−−+−= − −−+ +− −−+ − = − −−+ +− ⋅⋅= −−+ = −+ ∴ −−+= +−−=−+ >+=∴> >−+ −+ = >+ + − ⋅+−+−= −+ ∫∫ ∫ ∫∫ ∫ 4acb baxarcsin a baxbxc a C 4acb baxarcsin a baxbxca a C 4acb baxarcsin a bbax4acb a baxd bax4acba bbaxd bax4acb bax a baxd bax4acb bbax aa a dx bax4acb xadx axbxc x bax4acb a cbaxb a axbxc 4acba axbxc axbxc xf(x) a 4acb baxarcsin a baxbxc a dx axbxc x 2 2 2 2 22 2 2 2 2 2 ∵ ∵ 有解成立,则若被积函数证明: C a xarcsin xa dx += − ∫ 22 : 59公式 C 61 22 22 +−−= − ∫ xadx xa x :公式 - 51 - (十)含有 或 ))(( xbax −− 的积分(79~82) bx ax − − ± C )( )()( C )( )()( C )()( C)( )( C )1( )( 1 1 )( C 1 )( 1 1 )( 1 1 )( C] )1(2 1 1 2 1)[(2 1 1 )( 1 , 1 , 1 1 , 1 1 |AB| 1|AC| 1 |BC| B Rt 2 1 2 11 2 1 2 1 11 2 1 2 1 111 1 )1( 1 , )1( ) 2 (0 )0( )1( 1 )1( 1 )1( 1)(2 1 1 )( )1( 1)(2 1 1 2 1)(2 )1( 1)(2 1 1)(2 )1( 1)(2 1 1)(2 ] )1( 1 1 1[)(2 )1( 11)(2 )1( )(2 )1( )(2 )1( )(2 1 )0( 0 : C )( )()( 79 1 1 1 12 2 122 122 2 22 2 22 233 2 3 2 4422 422 2222 2222 222222 22222 2 22 2 22 222 2 +−+−⋅−+ − − −= +−+−−+−−+ − − −= + −+− − −+ − − −= + − − ⋅ − − −− − −+− − − ⋅−= − − ∴ − − = + − ⋅− − + − ⋅−= + − ⋅− − − − ⋅−− + − ⋅−= + − − − − ⋅−−+ + − ⋅−= − − ∴ − == − = − ==∴ =−===∠ ⋅−−⋅−=−⋅−= −+⋅−=−= − = ==⋅⋅= − ∴ ⋅==−<<=∴ > − = − − −+ + − ⋅−= − −+ + − ⋅⋅−= − −+ − −= − −− − −= − − − −= − +− −= − −= − −⋅ ⋅= − − ∴ − −⋅ = − − => − − => − − +−+−⋅−+ − − −= − − ∫ ∫ ∫ ∫∫∫∫∫ ∫∫∫∫ ∫∫ ∫∫ ∫∫∫∫ ∫∫ ∫∫∫ ∫ bxaxlnab bx axbx bxaxlnabablnba bx axbx bxax ablnba bx axbx ab bx bx axba bx bxax bx ab lnbadx bx ax bx axt t tba t tlnba t tba t tlnba t tlnba t t t tlnba t tlnbadx bx ax t tksin t kcos t kcot t t ksin kcsc t tk ABCΔ ksin kcoscotk cscklndk ksinksin kcos dk ksin dk ksinksin kcosdk ksin dk ksin dk ksin ksin dk ksin kcosdk ktan kseckdktanksec ktan dt t kdktanksecksecdktantπkksect tdt t dt t dt t ba t tlnbadt t ba t tlnba dt t badt t badt t abdt t ab dt tt abdt t tab dt t tbadt t battdx bx ax dt t bat dx t btaxt bx axt bx ax bxaxlnab bx axbxdx bx ax. 代入上式得:将 ,则,中,在 ,则可令 对于 ,则,令可证明 ∵ - 52 - C)()( C)()( C)( )( C 1 )( 1 )( C 11 1)( 1 )( 1 , 1 1 1|AB| 1|AC| 1 |BC| B Rt )()( ]2 4 1 2 )[(2)(2 2 4 1 2 2 2 1 2 1)2(1 2 1 11 )1( 1 , )1( ) 2 (0 )0( )1( 1 )1( 1)(2 1 1 )( )1( 1)(2 1 1 2 1)(2 )1( 1)(2)(2 )1( 1)(2 1 1)(2 ] )1( 1 1 1[)(2 )1( 11)(2 )1( )(2 )1( )(2 )1( )(2 1 )0( 0 : C )()( 80 1 1 122 1222 22 2 1 1 1 2 2 2 422 2422 22 2222 22222 22222 2 22 2 22 222 2 + − − ⋅−+ − − −= + − − ⋅−− − − −= + − − − − ⋅−−⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − − − −= − − ∴ − − = + + ⋅−− + −= + + ⋅ + ⋅−− + −= − −∴ + = + =∴ +====∠ +⋅−−−= +⋅+−−−= − −∴ +⋅+= +=+= ==⋅= + ∴ ==+<<=∴ > + − −+ + −⋅−= − −+ + −⋅⋅−= + −−−= + −− + −= + − + −= + −+−= + −= + −⋅⋅= − −∴ + −⋅ = + + => − − => − − + − − ⋅−+ − − −= − − ∫ ∫ ∫ ∫∫∫ ∫∫∫∫ ∫ ∫∫ ∫∫∫ ∫∫ ∫∫∫ ∫ xb axbx ab axarcsinab xb axxb ab axarcsinab ab xb xb axab xb ax ab xbarcsinabdx xb ax xb axt t tab t tarcsinab t t t ab t tarcsinabdx xb ax t tksin t kcos t k ABCΔ Ckcosksinabkab Cksinkabkabdx xb ax Cksink dkkcoskddkkcos dkkcosdk ksec kdksec ksec dt t kdksecdtksectπkktant tdt t dt t ba t tlnbadt t ba t tlnba dt t baarcsintabdt t abdt t ab dt tt abdt t tab dt t tabdt t abttdx xb ax dt t abt dx t btaxt xb axt xb ax ab axarcsinab xb axbxdx xb ax. 代入上式得:将 ,则,中,在 ,则可令 对于 ,则,令可证明 ∵ - 53 - 2 ))(( |BC||AC||AB| |BC| |AC| B Rt 2 )19 ( 2 1 12 )1( )(211 || 1 1 )(|| , )1( )(2 1 )( || 1 || 1 ))(( : )( 2 )( 81 22 2 222 2 2 2 222 2 2 2 C ab axarcsin xbax dx ab axarcsinμ, ab axμsin ab xb axμ ABCΔ xb axarctanμ xb axμtan C xb axarctan Ctarctandt t dt t abtt t t ab dx xb ax ax t tabaxab dt t abt dx t tabax t btax xb axt dx xb ax axxbax dx baC ab axarcsin xb)(ax dx. + − − = −− ∴ − −=∴ − −=∴ −=+=−=∴ −==∠ − − = − − = + − −= += + = + −⋅ ⋅⋅ + ⋅ − = − − ⋅ − + ⋅−=−∴> + −= + −=− + += − −= − −⋅ − = −− <+ − −= −− ∫ ∫ ∫∫ ∫∫ ∫ , ,中,在 ,则令 公式 于是 ,,则,令 证明 ∵ - 54 - C 4 )())(( 4 2))(( C) )1( )1( 1 ( 4 )( C) )1()1(1 ( 4 )( ) 11 1 1 1 111 1 1 ( 4 )())(( 1 1 , 1 1|AB| |AC| 1 |BC| B Rt C)( 4 )( C)( 8 1)(2))(( 8 1 8 1 8 )44( 32 1 8 4 32 1 8 4 4 1 2 2 8 1 2 4 1)2( 4 1 )1( , )1( ) 2 (0 )0( )1( )1( )(2 )1( )(2 1 ))(( 1 11 )1( )(2 )1( )(2)1(2 1 )0( 0 ))(( : )( C 4 )())(( 4 2))(( 82 2 22 2 2 2 2222 3 2 2 222 22 2 22 2 22 2 33 2 332 33 33 22 22 4 2 2 6 2 32 2 2632 32 2 32 2 2 222 2 22 22 2222 22 2 2 2 + − −⋅−+−−−−=−− − −= + + − − + ⋅ − −= + + + + − + ⋅−−= + ⋅ ++ + + ⋅ + ⋅ + − + ⋅ − −=−−∴ + = + =∴ +====∠ +⋅+⋅−⋅−−= +⋅+⋅−⋅⋅−−=−− +⋅+⋅⋅−= +⋅−⋅⋅−= +⋅−= +⎥⎦ ⎤ ⎢⎣ ⎡ ⋅−= ⋅=⋅= ⋅==⋅= + ∴ ==+<<=∴> + + −−= + − ⋅⋅ + − =−−∴ + −=−∴< + − = + −−+ =− + −= + +−+⋅= + +=> − −=> − − − −−=−− <+ − −⋅−+−−−−=−− ∫ ∫ ∫ ∫∫ ∫∫∫∫ ∫ ∫ ∫∫ ∫∫ ∫ xb axarcsinabxbaxbaxdxxbax ax xbt t tt t tarcsinab t t t t t tarcsinab t t tt t t t t tt tarcsinabdxxbax t ksin t tkcos t tk ABCΔ kcosksinkcosksinkab kcosksinkcosksinkabdxxbax Ckcosksinkcosksink Ckcosksinkcosksink Cksink Cksink dkksindkkcosksin dkkcosksindk ksec ktankdksec ksec ktandt t t kdksecdtksectπkktanttdt t t dt t tba dt t batt t abdxxbax t abaxba t ab t atabatax dt t batdt t batttat dx t atbxt ax xbt ax xb dx ax xbaxdxxbax ba xb axarcsinabxbaxbaxdxxbax. 代入上式得:将 ,则,中,在 联立以上两式得: ,则可令对于 ,则,令可 证明 ∵ ∵ - 55 - (十一)含有三角函数的积分(83~112) ( ) ( ) C|| 1 C|1|1 2 1 1 1 2 1C| 1 1| 2 1 C|1| 2 1|1| 2 1 1 1 2 1 1 1 2 1 1 1 1 CC|) 24 ( | 87 2 2 2 2 2 2 ++= +−= + + =+ + ⋅= + − + ⋅=+ − + ⋅= +−⋅−+⋅= − + + = − = == ++=++= ∫∫∫ ∫∫ ∫ ∫ xtanxsecln C cox xsin xcos ln xcos xsinlnC xcos xsinln C xsin xsinln xsin xsinln xsinlnxsinln xsind xsin xsind xsin xsind xsin dx xcos xcosdx xcos xdxsec x|tanxsec|lnxπtanlnxdxsec. :证明 Ccosx dcosx dxsinx sinx cosxsinxcosx dxsinx dxsinx Ccosxdxsinx +−= −=∴ −−=′ −−= +−= ∫∫ ∫∫ ∫ )( )( .83 的原函数为即 证明: ∵ Cxsin xsind dxxcos xcosxsin xcosxsin Cxsindxxcos. += =∴ =′ += ∫∫ ∫ )( 84 的原函数为即证明:∵ Ccosxln xcos d xcos dx xcos sinx dxxtan Ccosxlndxxtan. +−= −= = +−= ∫ ∫∫ ∫ 1 85 证明: Cxsinln xsin d xsin dx xsin xcos dxxcot Cxsinlndxxcot. += = = += ∫ ∫∫ ∫ 1 86 证明: - 56 - 1 )1( 2 1 )1( 1 )1( 2 1 1 1 2 1 1 2 1 1 2 1 )1( 1 1 2 1)1( 1 1 2 1 1 1 1 1( 2 1 1 1 1 2 2 1 22 2 2 2 22 2 2 2 2 2 2 2 1 22 2 22 2 1 22 2 2 1 2 1 2 2 2 2 1 22 2 22 22 2 11 1 2 88 2 2 2 12 2 1 1 2 22 2 2 2 222 Cxcotxcscln C sint costln C tsin tcosln C tcos tcosln C cost costln Ccostlncostln tcosd cost tcosd cost tcos)d costcost tcosd tcos dt tsin sint dt sint dxxcsc CxcotxcsclnCxtanlndxxcsc xcotxcsc xsin xcos xcosxsin xsin xcosxsin xsin xcos xsinxtan Cxtanln xtand xtan xtandxcosxcosxsin dxxcsc xtandxcosdx dxxcos xtand xtan xtan xcosxsin xcosxsin xcosxsinxsin xcsc CxcotxcsclnCxtanlndxxcsc. 2 2 +−= + − = + − ⋅= +−⋅ − − ⋅= + + − ⋅= +−⋅++⋅−= − − ++ + −= − + + −= − −= = = +−=+=∴ −= − = ⋅ = ⋅ == += = ⋅⋅ ⋅⋅ =∴ ⋅=∴ ⋅= + = ⋅⋅ + = ⋅⋅ == +−=+= ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫∫ ∫ :证法 又 :证法 ∵ ∵ ∵ - 57 - Cxtan ttanddxxsec xsecxtan xsecxtan Cxtandxxsec. += =∴ =′ += ∫∫ ∫ )( 89 2 22 2 的原函数为即证明:∵ Ccotx cotxdx dxcsc xcscxcot xcsccotx dxxcscx dxcsc Ccotxx dxcsc. 2 22 2 +−= −=∴ −−=′ −−= +−= ∫ ∫ ∫ ∫ ∫ )( )( 90 22 的原函数为即 证明: ∵ Cxsec xsecdx dxtanxsec xtanxsecxsec xtanxsecxsec Cxsecx dxtanxsec. += =⋅∴ ⋅⋅=′ +=⋅ ∫∫ ∫ )( 91 的原函数为即证明:∵ Cxcsc xcscdx dxcotcscx xcotcscxxcsc xcotcscxxcsc dxxcotcscxx dxcotcscx Cxcscx dxcotcscx. +−= −=⋅∴ ⋅−⋅−=′ ⋅−−=⋅ +−=⋅ ∫∫ ∫ ∫ ∫ )( )( 92 的原函数为即 证明: ∵ Cxsinx xdcos2xdx dxcos2x dxxsin Cxsinxdxxsin. +−= −= ⋅−= +⋅−= ∫∫ ∫∫ ∫ 2 4 1 2 2 4 1 2 1 ) 2 1 2 1( 2 4 1 2 93 2 2 证明: 2 21 2 xcosxsin − =提示: Cxsinx xdcos2xdx dxcos2x dxxcos Cxsinxdxxcos. ++= += ⋅+= +⋅+= ∫∫ ∫∫ ∫ 2 4 1 2 2 4 1 2 1 ) 2 1 2 1( 2 4 1 2 94 2 2 证明: 2 21 2 xcosxcos + =提示: - 58 - ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ −− −− −− −− −− −− −− − − −− − +⋅⋅−=∴ −+⋅−= −−−+⋅−= ⋅−−+⋅−= ⋅−+⋅−= ⋅⋅−⋅+⋅−= +⋅−= −= ⋅= − +⋅⋅−= dxxsin n nxcosxsin n dxxsin dxxsinnxsinxcosdxxsinn dxxsinndxxsinnxsinxcos dxxsinxsinnxsinxcos dxxsinxcosnxsinxcos dxxcosxsinnxcosxsinxcos xsindxcosxsinxcos xcosdxsin dxxsinxsindxxsin dxxsin n nxcosxsin n dxxsin. nnn nnn nnn nn nn nn nn n nn nnn 11 )1( )1( )1( )(1)1( )1( )1( 11 95 21 21 21 221 221 21 11 1 1 21 移项并整理得: 证明: ∫∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ −− −− −− −− −− −− −− − − −− − +⋅⋅=∴ −+⋅= −−−+⋅= ⋅−−+⋅= ⋅−+⋅= ⋅⋅−⋅+⋅= −⋅= = ⋅= − +⋅⋅= dxxcos n nxcosxsin n dxxsin dxxcosnxcosxsindxxcosn dxxcosndxxcosnxcosxsin dxxcosxcosnxcosxsin dxxcossxsinnxcosxsin dxxsinxcosnxsinxcosxsin xcosdxsinxcosxsin xsindxcos dxxcosxcosdxxcos dxxcos n nxsinxcos n dxxcos. nnn nnn nnn nn nn nn nn n nn nnn 11 )1( )1( )1( )(1)1( )1( )1( 11 96 21 21 21 221 221 21 11 1 1 21 移项并整理得: 证明: - 59 - ∫∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ −− −− −− −− − − − − −− − − −− − − +⋅ − −=∴ −+−= −−−=− −−−+−= − −+−= −+−= ⋅⋅−⋅+−= +−= −= − ⋅−= − − +⋅ − −= xsin dx n n xsin xcos n dx xsin dx dx xsin n xsin xcos dx xsin n xsin xcotdx xsin dxn dx xsin ndx xsin dxn xsin xcot dx xsin xsinn xsin xcot dx xsin xcosn xsin xcot dxxcosxsinnxcot xsin xcot xsin dxcot xsin xcot xcotd xsin dx xsinxsin dx xsin dx xsin dx n n xsin xcos n dx xsin dx. nnn nn nnn nnn nn nn n n nn n nn nnn 21 21 22 22 2 2 2 2 1 2 22 2 22 21 1 2 1 1 1)2( 1)(2 )1( 1)(2 )(2 1)(2 )(2 )(2 1 1 11 1 2 1 1 97 移项并整理得: 证明: ∫∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ −− −− −− −− − − − − −− − − −− − − +⋅ − −=∴ −+= −+=− −+−−= − −−= −−= ⋅⋅−⋅+= += = ⋅= − − +⋅ − −= xcos dx n n xcos xsin nxcos dx dx xcos n xcos xsin dx xcos n xcos xsin xcos dxn dx xcos ndx xcos dxn xcos xsin dx xcos xcosn xcos xtan dx xcos xsinn xcos xtan dxxsinxcosnxtan xcos xtan xcos dxtan xcos xtan xtand xcos dx xcosxcosxcos dx xcos dx n n xcos xsin nxcos dx. nnn nn nnn nnn nn nn n n nn n nn nnn 21 21 21 21 2 2 2 2 1 2 22 2 22 21 1 2 1 1 1)2( 1)2( )1( 1)2( )2( 1)2( )2( )(2 1 1 11 1 2 1 1 98 移项并整理得: 证明: - 60 - 11 1)(1 ])1[( )]()1[( 1)](1)[( ])1()1[()( )(11 1 )( 11 1)(1 ])1[( )]()1[( )]1()1[( ])1()1([)( )(11 1 )( 11 11 99 211 211 2 2 22 1111211 1111 11 1 211 211 2 2 22 22 1111211 1111 11 1 211 211 xdxsinxcos nm nxsinxcos nm xdxsinxcos xdxsinxcos nm nxcosxsinxdcos nm dxxsinxcosn dx xsin xcosxsinxsinxcosn dxxcosxsinxsinxcosn dxxsinxsinxcosnxcosxcosxsinnxcosxsind xcosxsinxdcos nm xcosxsin nm xcosxdsinxcos nm xdxsinxcos xdxsinxcosnmxcosd xdxsinxcos nm mxsinxcos nm xdxsinxcos xdxsinxcos nm mxsinxcosxdsin nm dxxcosxsinm dx xcos xcosxsinxcosxsinm dxxcosxsinxcosxsinm dxxcosxcosxsinmxsinxsinxcosmxsinxcosd xsinxcosxdsin nm xsinxcos nm xsinxdsinxcos nm xdxsinxcos xdxcosxsinnmxdxsind xdxsinxcos nm nxsinxcos nm xdxsinxcos nm mxsinxcos nm xdxsinxcos. nmnmnm nmnnnm nn nn 22nn nnnnnn nnnmmn nmnnnm nmnm nmnmnm nmmmnm mm mm mm mmmmmm mmnmnm nmmmnm nmnm nmnm nmnmnm −−+ −−−+ −− − −− −−−−−−− −−++− +−− −++ −+− −−−+ −− − −− −−−−−−− −−++− +−− −++ −−+ −+− ⋅ + − +⋅⋅ + −=⋅∴ ⋅ + − =⋅ + ∴ ⋅⋅−= + ⋅⋅⋅−= +⋅⋅⋅⋅−= ⋅⋅⋅−−⋅⋅⋅−=⋅ ⋅ + +⋅⋅ + − = ⋅ + − =⋅∴ ⋅⋅+−= ⋅ + − +⋅⋅ + =⋅∴ ⋅ + − =⋅ + −∴ ⋅⋅−= + ⋅⋅⋅−= +⋅⋅⋅⋅−= ⋅⋅⋅−+⋅⋅⋅−−=⋅ ⋅ + −⋅⋅ + = ⋅ + =⋅∴ ⋅⋅+= ⋅ + − +⋅⋅ + −= ⋅ + − +⋅⋅ + =⋅ ∫∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫ ∫∫ ∵ ∵ ∵ ∵ 证明②: 证明①: ② ① - 61 - xbacos ba xbacos ba xbadxbasin ba xbadxbasin ba dxxbasindxxbasin dxxbasinxbasindxbxcosaxsin xbacos ba xbacos ba dxbxcosaxsin. )( )(2 1 )( )(2 1 )( )( )2( 1)( )( )2( 1 )( 2 1 )( 2 1 ])( )( [ 2 1 C)( )(2 1 )( )(2 1 100 −⋅ − −+⋅ + −= −− − +++ + = −+= −++=⋅ +−⋅ − −+⋅ + −=⋅ ∫∫ ∫∫ ∫∫ ∫ 证明: C )( )(2 1)( )(2 1 )( )( )2( 1)( )( )2( 1 )( 2 1 )( 2 1 ])( )( [ 2 1 C)( )(2 1 )( )(2 1 101 ++⋅ + −−⋅ − = ++ + −−− − = +−−= +−−=⋅ +−⋅ − ++⋅ + −=⋅ ∫∫ ∫∫ ∫∫ ∫ xbasin ba xbasin ba xbadxbacos ba xbadxbacos ba dxxbacosdxxbacos dxxbacosxbacosdxbxsinaxsin xbasin ba xbasin ba dxbxsinaxsin. 证明: C )( )(2 1)( )(2 1 )( )( )2( 1)( )( )2( 1 )( 2 1 )( 2 1 ])( )( [ 2 1 C)( )(2 1 )( )(2 1 102 +−⋅ − ++⋅ + = −− − +++ + = −++= −++=⋅ +−⋅ − ++⋅ + =⋅ ∫∫ ∫∫ ∫∫ ∫ xbasin ba xbasin ba xbadxbacos ba xbadxbacos ba dxxbacosdxxbacos dxxbacosxbacosdxbxcosaxcos xbasin ba xbasin ba dxbxcosaxcos. 证明: )]( )( [ 2 1 βαsinβαsinβcosαsin −++=提示: )]( )([ 2 1 βαcosβαcosβsinαsin −++−=提示: )]( )( [ 2 1 βαcosβαcosβcosαcos −++=提示: - 62 - C a xarctan aax dx 22 +⋅= +∫ 1 19 :公式 C22 2 C2 )( )( )( 12 )( )( )( 12 0 )( )( )( 12 )( )( 12 )( 12 2 12 1 2 2)1( 1 1 2)1( 1 2 , 1 2 )1( 2 1 ) 2 1( 2 1 22 1) 2 ( 1 2 2 1 2 2 22 2 , 2 )( C22 103 2222 2222 2222222 2222 222 222 2 2 2 22 2 2 2 22 222 2 2 22 2222 + − +⋅ ⋅ − = + = + − + ⋅ − = + −++ =+ −++ >−> + −++ = −++ = +−+ = ++ = + ⋅ ++ + = ⋅+ ∴ + ++ = + +=⋅+ + =∴ +=+=⋅== + = + ⋅ =⋅⋅== >+ − +⋅ ⋅ − = ⋅+ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ba bxtana arctan baxsinba dxxtant ba batarctan ba batd babat batd babat baba batd babat dt babat a dt a a b a bta dt abtta dt tbtta t xsinba dx t btta t btaxsinbadt t dx dxtdxxtandxxsecdxxtandt t t xtan xtanxcosxsinxsinxtant ba ba bxtana arctan baxsinba dx. 代入上式得:将 时即,当 则令证明: - 63 - C 2 1 21 22 + + − ⋅= −∫ ax axln aax dx :公式 C 2 2 1 2 2 12 )( )( )( 12 )( )( )( 12)( )( )( 12 0 )( )( )( 12 )( )( 12 )( 12 2 12 1 2 2)1( 1 1 2)1( 1 2 , 1 2 )1( 2 1 ) 2 1( 2 1 22 1) 2 ( 1 2 2 1 2 2 22 2 , 2 )( C 2 2 1 104 22 22 22 22 22 22 2222 222222 2222 222 222 2 2 2 22 2 2 2 22 222 2 2 22 22 22 22 + −++⋅ −−+⋅ ⋅ − = + = + −++ −−+ ⋅ − ×= + −−+ = + −−+ =+ −++ <−< + −++ = −++ = +−+ = ++ = + ⋅ ++ + = + ∴ + ++ = + +=+ + =∴ +=+=⋅== + = + ⋅ =⋅⋅== <+ −++⋅ −−+⋅ ⋅ − = + ∫ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ abbxtana abbxtana ln abxsinba dxxtant C abbat abbatln ab batd abbat batd abbat batd babat baba batd babat dt babat a dt a a b a bta dt abtta dt tbtta t xsinba dx t btta t btaxsinbadt t dx dxtdxxtandxxsecdxxtandt t t xtan xtanxcosxsinxsinxtant ba abbxtana abbxtana ln abxsinba dx. 代入上式得:将 时即,当 则令证明: - 64 - 2 21θ 2 θcoscos + =:提示 C a xarctan aax dx 22 +⋅= +∫ 1 19 :公式 ( ) ( ) Cxtan ba baarctan ba ba baxcosba dxxtant Ct ba baarctan ba ba ba Ct ba baarctan baba Ct ba baarctan ba ba ba Ct ba baarctan ba ba ba dt t ba baba dt b)atba baba dt batbaxcosba dx dt t dx dxtdx xcos dx xcos dxxsecxtanddt t batba t tbaxcosba t t xtan xtan xcosxtant aCxtan ba baarctan ba ba baxcosba dx. +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ + − − + ⋅ + = ⋅+ = +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ + − ⋅ − + ⋅ + = +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ + − ⋅ −⋅+ = +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ + − ⋅ + − ⋅ − = +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ + − ⋅ + − ⋅ − = +⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − +− = −++ >> −++ = ⋅+ ∴ + =∴ + = + ==⋅== + −++ = + − ⋅+=⋅+∴ + − = + − == >+⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ + − − + ⋅ + = ⋅+ ∫ ∫∫ ∫∫ ∫ 2 2 2 2 12 2 2 12 ()( 2 |||| )()( 2 1 2 2 1 1 1 2 2 1 22 1 2 1 )()( 1 1 1 1 2 1 2 1 2 )b( 2 2 105 2 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 22 代入上式得:将 时即,当 则,令证明: ∵ - 65 - ( ) ( ) 2 2 1 2 1 1 1)1( 1 2 12 12 12 )()( 2 ()( 2 0 |||| )()( 2 1 2 2 1 1 1 2 2 1 22 1 2 1 )()( 1 1 1 1 2 1 2 1 2 )b( 2 2 1 106 2 22 2 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 22 C ab baxtan ab baxtan ln ab ba baxcosba dxxtant C ab bat ab bat ln ab ba ba C ab bat ab bat ln ab ba ba C ab bat ab bat ln abba C ab bat ab bat ln ba ab ba C ab bat ab bat ln ba ab ba dt ab bat ba dt t ab baab dt abtba dt b)atba abba,ba dt batbaxcosba dx dt t dx dxtdx xcos dxxcos dxxsecxtanddt t batba t tbaxcosba t t xtan xtan xcosxtant aC ab baxtan ab baxtan ln ab ba baxcosba dx. + − + − − + + ⋅ − + ⋅ + = ⋅+ = + − + − − + + ⋅ − + ⋅ + = + − + + − + − ⋅ − + ⋅ + −=+ − + + − + − ⋅ −⋅+ −= + − + + − + − ⋅ + − ⋅ − =+ − + + − + − ⋅ + − ⋅⋅ − = ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − + − − = −⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − +− = −−+ = −++ >−∴<< −++ = ⋅+ ∴ + =∴ + = + ==⋅== + −++ = + − ⋅+=⋅+∴ + − = + − == <+ − + − − + + ⋅ − + ⋅ + = ⋅+ ∫ ∫∫ ∫∫ ∫∫ ∫ 代入上式得:将 ,即当 则,令证明: ∵ 2 21θ 2 θcoscos + =:提示 C 2 1 21 22 + + − ⋅= −∫ ax axln aax dx :公式 - 66 - Cxtan a barctan ab Cxtan a barctan a b b xtand xtan b ab xtand xtan b ab xtand xtanba dx xtanbaxcosxsinbxcosa dx Cxtan a barctan abxsinbxcosa dx. +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⋅⋅= +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⋅⋅⋅= + = + = + = + ⋅= + +⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⋅⋅= + ∫ ∫ ∫ ∫∫ ∫ 1 1 ))( 11 )( 11 1 11 1 107 2 22 2 2 2 22 222 22222222 2222 证明: C a xarctan aax dx 22 +⋅= +∫ 1 19 :公式 C axtanb axtanbln ab C axtanb axtanbln ab C axtanb axtanbln ab xtanbd axtanbb xtanbd xtanbab xtand xtanba dx xtanbaxcosxsinbxcosa dx C axtanb axtanbln abxsinbxcosa dx. + −⋅ +⋅ ⋅= + +⋅ −⋅ ⋅−= + +⋅ −⋅ ⋅⋅−= ⋅ −⋅ −= ⋅ ⋅− = − = − ⋅= − + −⋅ +⋅ ⋅= − ∫ ∫ ∫ ∫∫ ∫ 2 1 2 1 2 11 )( )( 11 )( )( 11 1 11 2 1 108 22 22 222 22222222 2222 证明: C 2 1 21 22 + + − ⋅= −∫ ax axln aax dx :公式 blogblog aa −=−1 提示: - 67 - Caxsin a axcosx a daxaxcos a axcosx a dxaxcos a axcosx a axcosdx a dxaxsinx Caxcosx a axsin a dxaxsinx. +⋅+⋅⋅−= +⋅⋅−= +⋅⋅−= −=⋅ +⋅⋅−⋅=⋅ ∫ ∫ ∫∫ ∫ 2 2 2 11 11 11 1 11 109 证明: axcos a axsinx a axcosx a daxaxsin a axsinx a axcosx a axsindx a axcosx a dxaxcosx a axcosx a dxaxcos a axcosx a axcosdx a dxaxsinx Caxcos a axsinx a axcosx a dxaxsinx. ⋅+⋅⋅+⋅⋅−= ⋅−⋅⋅+⋅⋅−= ⋅+⋅⋅−= ⋅+⋅⋅−= +⋅⋅−= −=⋅ +⋅+⋅⋅+⋅⋅−=⋅ ∫ ∫ ∫ ∫ ∫∫ ∫ 32 2 32 2 2 2 2 22 22 32 22 2 21 2 21 21 21 11 1 221 110 证明: Caxcos a axsinx a daxaxsin a axsinx a dxaxsin a axsinx a axsindx a dxaxcosx Caxsinx a axcos a dxaxcosx. +⋅+⋅⋅= −⋅⋅= −⋅⋅= =⋅ +⋅⋅−⋅=⋅ ∫ ∫ ∫∫ ∫ 2 2 2 11 11 11 1 11 111 证明: Caxsin a axcosx a axsinx a daxaxcos a axcosx a axsinx a axcosdx a axsinx a dxaxsinx a axsinx a dxaxsin a axsinx a axsindx a dxaxcosx Caxsin a axcosx a axsinx a dxaxcosx. +⋅−⋅⋅+⋅⋅= ⋅−⋅⋅+⋅⋅= ⋅−⋅⋅= ⋅+⋅⋅= −⋅⋅= =⋅ +⋅−⋅⋅+⋅⋅=⋅ ∫ ∫ ∫ ∫ ∫∫ ∫ 32 2 32 2 2 2 2 22 22 32 22 2 21 2 21 21 21 11 1 221 112 证明: - 68 - (十二)含有反三角函数的积分(其中 0>a )(113~121) Cxa a xarcsinx Cxa a xarcsinx xadxa a xarcsinx dx xaa xarcsinx dx xa x a xarcsinx dx a a x x a xarcsinx a xarcsindx a xarcsinxdx a xarcsin aCxa a xarcsinxdx a xarcsin. +−+⋅= +−⋅ − ⋅+⋅= −−+⋅= − −⋅= − −⋅= ⋅ − ⋅−⋅= −⋅= >+−+⋅= − − ∫ ∫ ∫ ∫ ∫∫ ∫ 22 2 1 122 222 1 22 2 22 22 2 22 )( 2 11 1 2 1 )()( 2 1 1 2 1 1 )(1 1 )0( 113 证明: 4 ) 42 ( 4 4 2 4 4 2 , Rt 442 4 )1(2 4 2 8 2 4 2 2 8 2 4 2 4 2 4 2 4 2 2 )( , )0( 4 ) 42 ( 114 22 22 222 22 2 2 22 2 2 2 2 2 22 22 22 22 2 22 22 Cxax a xarcsinax Cxax a xarcsina a xarcsinax C a xa a xa a xarcsina a xa a xarcsinadx a xarcsinx a xtsin a xatcos xa|BC|,x|AC|a|AB|,tBABCΔ Ctcostsinatatcosta Ctcostsinatcosta Ctsinatcosta tdtcosatcosta dttcosatcosta tcosdtadttsinta dt costtsintatsinadttsinadx a xarcsinx tsinax a xarcsint aCxax a xarcsinaxdx a xarcsinx. 22 2222 22 22 +−+⋅−= +−⋅+⋅+⋅ − = + − ⋅⋅+⋅+ − ⋅⋅−=⋅∴ = − =∴ −====∠ +⋅⋅+⋅+⋅⋅−= +⋅⋅+−⋅⋅−= +⋅+⋅⋅−= +⋅⋅−= +⋅⋅−= −=⋅= ⋅⋅=⋅⋅⋅=⋅∴ ⋅== >+−+⋅−=⋅ ∫ ∫ ∫ ∫∫ ∫∫∫ ∫ 则,中,可设在 则令证明: 12 2 22 2 22 −= −= ⋅⋅= xcos xsinxcosxcos xcosxsinxsin提示: - 69 - Cxaax a xarcsinx Cxaxaxaa a xarcsinx Cxa a xaa a xaa a x a xarcsinadx a xarcsinx a xtsin a xatcos xa|BC|,x|AC|a|AB|,tBABCΔ Ctcosatcosatsinta Ctcosatcosatsinta tcosdtcosatcosatsinta dttcostsinadttsinatsinta dttcostsinatsinta dttsinatsinta tsindta dt costtsintatsinadttsinadx a xarcsinx tsinax a xarcsint aCxaax a xarcsinxdx a xarcsinx. 22 22 22 22 2222 22 22 +−++⋅= +−⋅ − −−⋅+⋅= +−⋅ − ⋅− − ⋅+⋅⋅=⋅∴ = − =∴ −====∠ +⋅−⋅+⋅⋅= +⋅ + ⋅−⋅+⋅⋅= −⋅+⋅⋅= ⋅+−⋅⋅= −−⋅⋅= −⋅⋅= = ⋅⋅=⋅⋅⋅=⋅∴ ⋅== >+−++⋅=⋅ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫∫ ∫ 2222 3 23 3 33 3 33 2 3 33 3 3 3 33 3 3 2 33 3 3 2 33 3 3 2 3 3 3 3 3 3 3 3 3 23222 2222 3 2 )2( 9 1 3 93 3 93 3 , Rt 933 21 1 333 333 3 33 )1( 33 33 3 )( , )0( )2( 9 1 3 115 则,中,可设在 则令证明: - 70 - Cxa a xarccosx Cxa a xarccosx xadxa a xarccosx dx xaa xarccosx dx xa x a xarccosx dx a a x x a xarccosx a xarccosdx a xarccosxdx a xarccos aCxa a xarccosxdx a xarccos. +−−⋅= +−⋅ − ⋅−⋅= −−−⋅= − +⋅= − +⋅= ⋅ − ⋅+⋅= −⋅= >+−−⋅= − − ∫ ∫ ∫ ∫ ∫∫ ∫ 22 2 1122 222 1 22 2 22 22 2 22 )( 2 11 1 2 1 )()( 2 1 1 2 1 1 )(1 1 )0( 116 证明: 4 ) 42 ( 4 4 2 4 4 2 , Rt 442 4 )1(2 4 2 8 2 4 2 2 8 2 4 2 4 2 4 2 4 2 2 )( , )0( 4 ) 42 ( 117 22 22 2 22 2 2 22 2 2 2 2 2 22 22 22 22 2 22 22 Cxax a xarcsinax Cxax a xarcsina a xarcsinx C a xa a xa a xarcsina a x a xarcsinadx a xarccosx a xtcos a xatsin xa|AC|,x|BC|a|AB|,tBABCΔ Ctcostsinatatcosta Ctcostsinatcosta Ctsinatcosta tdtcosatcosta dttcosatcosta tcosdtadttsinta dttsin tcostatcosadttcosadx a xarccosx tcosax a xarccost aCxax a xarccosaxdx a xarccosx. 22 2 222 22 22 +−+⋅−= +−⋅−⋅−⋅= + − ⋅⋅−⋅−⋅⋅=⋅∴ = − =∴ −====∠ +⋅⋅−⋅−⋅⋅= +⋅⋅−−⋅⋅= +⋅−⋅⋅= −⋅⋅= −⋅⋅= =⋅−= ⋅⋅−=⋅⋅⋅=⋅∴ ⋅== >+−−⋅−=⋅ ∫ ∫ ∫ ∫∫ ∫∫∫ ∫ 则,中,可设在 则令证明: 12 2 22 2 22 −= −= ⋅⋅= xcos xsinxcosxcos xcosxsinxsin提示: - 71 - Cxaax a xarcsinx Cxaxaxaa a xarcsinx Cxa a xaa a xaa a x a xarcsinadx a xarccosx a xtcos a xatsin xa|AC|,x|BC|a|AB|,tBABCΔ Ctsinatsinatcosta Ctsinatsinatcosta tsindtsinatsinatcosta dttsintcosadttcosatcosta dttsintcosatcosta dttcosatcosta tcosdta dttsin tcostatcosadttcosadx a xarccosx tcosax a xarccost aCxaax a xarccosxdx a xarccosx. 22 22 22 22 2222 22 22 +−+−⋅= +−⋅ − +−⋅−⋅= +−⋅ − ⋅+ − ⋅−⋅⋅=⋅∴ = − =∴ −====∠ +⋅+⋅−⋅⋅= +⋅ + ⋅+⋅−⋅⋅= +⋅−⋅⋅= ⋅+−⋅⋅= −−⋅⋅= −⋅⋅= = ⋅⋅−=⋅⋅⋅=⋅∴ ⋅== >+−+−⋅=⋅ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫∫ ∫ 2222 3 23 3 33 3 33 2 3 33 3 3 3 33 3 3 2 33 3 3 2 33 3 3 2 3 3 3 3 3 3 3 3 3 23222 2222 3 2 )2( 9 1 3 93 3 93 3 , Rt 933 21 1 333 333 3 33 )1( 33 33 3 )( , )0( )2( 9 1 3 118 则,中,可设在 则令证明: Cxalna a xarctanxdx a xarctan xa Cxalna a xarctanx xad xa a a xarctanx dx xa a a xarctanx dx xa xa a xarctanx dx a a xx a xarctanx a xarctanxdx a xarctanxdx a xarctan aCxalna a xarctanxdx a xarctan. ++⋅−⋅=∴ >+ ++⋅−⋅= + + −⋅= + −⋅= + −⋅= ⋅ + ⋅−⋅= ⋅−⋅= >++⋅−⋅= ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ )( 2 0 2 )(1 2 1 2 1 )(1 1 )0( )( 2 119 22 22 22 22 22 2 22 22 2 22 ∵ 证明: - 72 - Cxa a xarctanxa C a xa a xa a xarctanadx a xarctanx a xttan a xa tcos tsec xa|AB|,x|AC|a|BC|,tBABCΔ Cttanatsecta dttsecatsecta tsecdta dtttan tsectattanadtttanadx a xarctanx ttanax a xarctant aCxa a xarctanxadx a xarctanx. 2 22 22 22 +⋅−⋅+= +⋅− + ⋅⋅=⋅∴ = + ==∴ +====∠ +⋅−⋅⋅= −⋅⋅= = ⋅⋅=⋅⋅⋅=⋅∴ ⋅== >+⋅−⋅+=⋅ ∫ ∫ ∫ ∫∫∫ ∫ 2 )( 2 1 2 2 , 1 Rt 22 22 2 )( , )0( 2 )( 2 1 120 22 22 2 2 2 2 2 2 2 2 2 22 22 则,中,可设在 则令证明: Cxalnaxa a xarctanxdx a xarctanx xa Cxalnaxa a xarctanx axd xa adxa a xarctanx dx xa aadxa a xarctanx dx xa aaxa a xarctanx dx xa xa a xarctanx dx xa xa a xarctanx dx a a xx a xarctanx dx a xarctandx a xarctanx aCxalnaxa a xarctanxdx a xarctanx. +++⋅−⋅=⋅∴ >+ +++⋅−⋅= + + +−⋅= + +−⋅= + −+ −⋅= + −⋅= + −⋅= ⋅ + ⋅−⋅= =⋅∴ >+++⋅−⋅=⋅ ∫ ∫∫ ∫∫ ∫ ∫ ∫ ∫ ∫∫ ∫ )( 66 3 0 66 3 )(1 66 3 66 3 6 3 6 3 3 3 1 )(1 1 3 1 3 3 1 )0( )( 66 3 121 22 3 2 3 2 22 22 3 2 3 22 22 3 2 3 2 22 2 2 3 2 22 2223 2 22 23 22 33 2 3 3 32 22 3 2 3 2 ∵ 证明: - 73 - (十三)含有指数函数的积分(122~131) Ca aln da aln dxa aalnaalnaa dxaaln aln dxa Ca aln dxa. x xx xxxx xx xx +⋅= =∴ =′ ⋅= +⋅= ∫∫ ∫∫ ∫ 1 1 , )( 1 1 122 的原函数为即 证明: ∵ Ce a Ce a dμe a dxe dμ a , dx a μxμ ax Ce a dxe. ax μμax axax +⋅= +⋅==∴ === +⋅= ∫∫ ∫ 1 11 1 , 1 123 则令证明: Ceax a Ce a ex a daxe a ex a dxe a ex a dex a dxex Ceax a dxex. ax axax axax axax axax axax +−= +−⋅⋅= −⋅⋅= −⋅⋅= =⋅ +−=⋅ ∫ ∫ ∫∫ ∫ )1(1 1 1 1 1 1 1 1 )1(1 124 2 2 2 2 证明: dxex a nex a dxe a ex a dex a dxex dxex a nex a dxex. axnaxn naxaxn axnaxn axnaxnaxn ∫ ∫ ∫∫ ∫∫ ⋅−⋅⋅= −⋅⋅= =⋅ ⋅−⋅⋅=⋅ − − 1 1 1 1 1 1 1 125 证明: - 74 - Ca aln ax aln dxa aln ax aln dax aln dxax Ca aln a aln xdxax. xx xx xx xxx +⋅−⋅⋅= −⋅⋅= =⋅ +⋅−⋅=⋅ ∫ ∫∫ ∫ 2 2 )( 1 1 1 1 1 )( 1 126 证明: Ca aln dxa xx +⋅=∫ 1 122:公式 dxax aln nax aln dxa aln ax aln dax aln dxax dxax aln nax aln dxax. xnxn nxxn xnxn xnxnxn ∫ ∫ ∫∫ ∫∫ ⋅−⋅⋅= −⋅⋅= =⋅ ⋅−⋅⋅=⋅ − − 1 1 1 1 1 1 1 127 证明: Cbxcosbbxsinae ba Cbxsine ba abxcose ba bdxbxsine Cbxsine b abxcose b dxbxsine b ba debxsin b abxsine b abxcose b debxsin b abxsine b abxcose b debxcos b bxcose b bxcosde b dxbxsine Cbxcosbbxsinae ba dxbxsine. ax axaxax axaxax axaxax axaxax axax axax axax +⋅−⋅⋅ + = +⋅⋅ + +⋅⋅ + −=⋅∴ +⋅⋅+⋅⋅−=⋅ + −⋅⋅+⋅⋅−= −⋅⋅+⋅⋅−= +⋅⋅−= −=⋅ +⋅−⋅⋅ + =⋅ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ )(1 1 1 1 11 1 )(1 128 22 2222 22 22 22 22 22 移项并整理得: 证明: - 75 - Cbxcosabxsinbe ba bxdxcose bxcose b abxsine b bxdxcose b babxdxcose b a bxdxcose b abxcose b abxsine b ebxdcos b abxcose b abxsine b bxcosde b abxsine b dxebxsin b abxsine b debxsin b bxsine b bxsinde b bxdxcose Cbxcosabxsinbe ba bxdxcose. axax axaxaxax axaxax axaxax axax axax axax axax axax +⋅+⋅⋅ + =⋅∴ ⋅⋅+⋅⋅=⋅ + =⋅+∴ ⋅−⋅⋅+⋅⋅= −⋅⋅+⋅⋅= +⋅⋅= ⋅−⋅⋅= −⋅⋅= =⋅ +⋅+⋅⋅ + =⋅ ∫ ∫∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ )(1 1)1( 1 1 1 1 11 1 )(1 129 22 22 22 2 2 2 2 2 22 2 22 证明: - 76 - ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫∫ ∫ ∫ − − −− −− −− −− − − − −− − −− − −− −− −− −− −− − − ⋅ + −⋅ + ⋅−⋅⋅⋅ + = ⋅⋅ + +⋅⋅⋅ + −⋅⋅ + −⋅ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⋅⋅ −⋅ +⋅⋅⋅ −⋅ −⋅ + −⋅ = ⋅ ⋅ −⋅⋅ + −⋅⋅ −⋅⋅ + ⋅⋅⋅ −⋅ −⋅=⋅ ⋅ −⋅⋅ + +⋅⋅ −⋅⋅ − ⋅⋅⋅ −⋅ =⋅⋅ ⋅ + −⋅⋅= ⋅−⋅−⋅⋅= ⋅ ⋅−⋅⋅=⋅⋅ ⋅⋅−−⋅−⋅⋅= ⋅⋅−⋅+⋅⋅−⋅⋅= ⋅−⋅⋅= ⋅=⋅⋅ ⋅−⋅⋅= ⋅⋅−⋅⋅=⋅ ⋅ −⋅ −⋅⋅⋅ −⋅ = ⋅ −⋅ =⋅⋅ ⋅⋅−⋅= −⋅⋅=⋅⋅=⋅ ⋅ + −⋅ + ⋅−⋅⋅⋅ + =⋅ dxbxsine nba bnn bxcosnbbxsinabxsine nba bxsine nba abxsinbxcose nba bndxbxsine nba bnn bxsine bnn bxsinbxcose nb dxbxsine nba bnn dxbxsine dxebxsin nnb nbabxsine nnb a bxsinbxcose nb dxbxsinedxbxsine dxebxsin nnb nbabxsine nnb a bxsinbxcose nb dxbxcosbxsine dxebxsin bn nbabxsine bn a dxebxsinbdxebxsin bn abxsine bn a bxcosedbxsin dxebxsin bn abxsine bn dxbxcosbxsine dxbxcosbxsinendxebxsin b abxsine b dxebxcosbxsinnbbxsineabxsin b bxsine b bxsinedbxsin b bxsine b bxsindbxsine b dxbxcosbxsine dxebxsinbdxbxcosbxsinea dxebxsinbbxcoseabxsinbxcosedbxsin bxcosedbxsin nb bxsinbxcose nb bxsindbxcose nb dxbxcosbxsine dxbxcosbxsinedxbxsine dxbxcosbxsinedxbxsinbxsinedxbxsine dxbxsine nba bnn bxcosnbbxsinabxsine nba dxbxsine. nax nax naxnaxnax naxnaxnax nax axnnax naxnaxnax axnnax naxnax axnnax axnaxnnax axn axnnaxnax naxaxnnax axnnaxnax naxnax naxnax axnnax axaxnaxn axnnax naxnax naxnax naxnaxnax nax naxnax 1)( )(1 1)( 1)( 1 )1( 1 1)( )1()1( )1( 1 )1()1( )1( 1 )( 1 )1(1 ])1([ 11 )( 11 1 )( )( )( )1( 1 )1( 1 )1( 1 )(1 1)( )(1 130 2 222 2 1 222 222 1 222 2 222 2 2 12 222 2 2 22 2 12 2 22 2 122 22 2 1 1 1 21 1 11 1 11 11 122 222 2222 2 222 2 1 222 移项并整理得: 式代入①式得:将 将⑤式代入②式得: ⑤ 将④式代入③式的得: ④移项并整理得: 又 ③ 又 ② 又 ① 证明: - 77 - ∫ ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫∫ ∫∫ ∫ ∫ ∫∫ ∫∫ ∫∫ ∫ ∫∫ ∫∫ ∫∫∫ ∫ ∫ −− −− −− −− −− − − − −− − −− − −− −− −− −− −− − − ⋅ + −⋅ +⋅+⋅⋅⋅ + = ⋅⋅ + +⋅⋅⋅ + +⋅⋅ + −⋅ = ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⋅⋅ −⋅ −⋅⋅⋅ −⋅ −⋅ −− −⋅ = ⋅ ⋅ −⋅⋅ + −⋅⋅ −⋅⋅ + ⋅⋅⋅ −⋅ −⋅=⋅ ⋅ −⋅⋅ + −⋅⋅ −⋅⋅ + ⋅⋅⋅ −⋅ =⋅⋅ ⋅ + +⋅⋅−= ⋅+⋅+⋅⋅−= ⋅ ⋅+⋅⋅−=⋅⋅ ⋅⋅−−⋅+⋅⋅−= ⋅⋅−⋅−⋅⋅+⋅⋅−= ⋅+⋅⋅−= ⋅−=⋅⋅ ⋅+⋅⋅= ⋅⋅+⋅⋅=⋅ ⋅ −⋅ −⋅⋅⋅ −⋅ = ⋅ −⋅ =⋅⋅ ⋅⋅−⋅= −⋅⋅=⋅⋅=⋅ ⋅ + −⋅ + ⋅+⋅⋅⋅ + =⋅ dxbxcose nba bnnbxsinnbbxcosabxcose nba bxcose nba abxcosbxsine nba bndxbxcose nba bnn bxcose bnn abxcosbxsine nb dxbxcose nba bnn dxbxcose dxebxcos nnb nbabxcose nnb a bxcosbxsine nb dxbxcosedxbxcose dxebxcos nnb nbabxcose nnb a bxcosbxsine nb dxbxsinbxcose dxebxcos bn nbabxcose bn a dxebxcosbdxebxcos bn abxcose bn a bxsinedbxcos dxebxcos bn abxcose bn dxbxsinbxcose dxbxsinbxcosendxebxcos b abxcose b dxebxsinbxcosnbbxcoseabxcos b bxcose b bxcosedbxcos b bxcose b bxcosdbxcose b dxbxsinbxcose dxebxcosbdxbxsinbxcosea dxebxcosbbxsineabxcosbxsinedbxcos bxsinedbxcos nb bxcosbxsine nb bxcosdbxsine nb dxbxsinbxcose dxbxsinbxcosedxbxcose dxbxsinbxcosedxbxcosbxcosedxbxcose dxbxcose nba bnn bxsinnbbxcosabxcose nba dxbxcose. naxnax naxnaxnax naxnaxnax nax axnnax naxnaxnax axnnax naxnax axnnax axnaxnnax axn axnnaxnax naxaxnnax axnnaxnax naxnax naxnax axnnax axaxnaxn axnnax naxnax naxnax naxnaxnax nax naxnax 1)( )(1 1)( )(1)(1 1 )(1 )1()1( )(1 1 )(1)(1 )(1 1 )( 1 )1(1 ])1([ 11 )( 11 1 )( )( )( )(1 1 )(1 1 )(1 1 )(1 1)( )( 1 131 2 222 2 1 222 222 1 222 2 222 2 2 12 222 2 2 22 2 12 2 22 2 122 22 2 1 1 1 21 1 11 1 11 11 122 222 2222 2 222 2 1 222 移项并整理得: 式代入①式得:将 将⑤式代入②式得: ⑤ 将④式代入③式的得: ④移项并整理得: 又 ③ 又 ② 又 ① 证明: - 78 - (十四)含有对数函数的积分(132~136) Cxxlnx dxxlnx dx x xxlnx xlndxxlnxxdxln Cxxlnxxdxln. +−⋅= −⋅= ⋅−⋅= −⋅= +−⋅= ∫ ∫ ∫∫ ∫ 1 132 证明: Cxlnln xlnd xln dx xlnx dx Cxlnlndx xlnx dx. += = ⋅ += ⋅ ∫∫ ∫ 1 133 证明: x xln 1)( =′提示: C n xlnx n Cx n x n xln dxx n x n xln xlndx n x n xln dx n xln dxxn n xlndxxlnx C n xlnx n dxxlnx. n nn nn nn !n nn nn + + −⋅ + = +⋅ + −⋅ + = + −⋅ + = + −⋅ + = + = ⋅+⋅ + =⋅ + + −⋅ + =⋅ + ++ + ++ + + ∫ ∫ ∫ ∫∫ ∫ ) 1 1( 1 1 ) 1 1( 1 1 1 1 1 1 1 1 )1( 1 ) 1 1( 1 1 134 1 121 1 11 1 证明: - 79 - k knn k knkn nnnn nnnn nnn nnn nn nn nnn k knn k nnn lnx k nx xlnxnnn xlnxnnn xlnxnnn lnx)kn(nnn)( lnxnnnlnxxnnlnxxnlnxx dxlnxnnnlnxxnnlnxxnlnxx dxlnxnnlnxxnlnxx x)lnxd(nlnxxnlnxx dxlnxnlnxx dx x x)ln(nxlnxx x)lnxd(lnxxdxlnx lnx k nx dxlnxnlnxxdxlnx. )()1( )(123)2()1(1)( )(234)2()1(1)( )(345)2()1(1)( )(1)2()1(1 ))(2()1()()1()()( )()2()1()()1()()( )()1()()( )()( )()( 1)( )()( )()1( )()()( 135 0 110 121 132 321 321 21 11 1 1 0 1 ⋅⋅−= ⋅⋅××−⋅−⋅⋅−+ ⋅⋅××−⋅−⋅⋅−+ ⋅⋅××−⋅−⋅⋅−+ +⋅+−−⋅−⋅⋅−++ −⋅−⋅−⋅⋅−⋅+⋅⋅−⋅= −⋅−⋅−⋅⋅−⋅+⋅⋅−⋅= −⋅+⋅⋅−⋅= +⋅⋅−⋅= −⋅= ⋅⋅⋅−⋅= −⋅= ⋅⋅−= −⋅= − = − − − −− −−− −−− −− −− − − − = − ∑ ∫ ∫ ∫ ∫ ∫ ∫∫ ∑ ∫∫ ! ! 证明: ! ! ⋯⋯ ⋯⋯ ⋯⋯ ⋯⋯⋯⋯⋯⋯ ....... ∫ ∫ ∫ ∫∫ ∫∫ −+ −++ ++ + −+ ⋅ + −⋅⋅ + = ⋅⋅ + −⋅⋅ + = + −⋅⋅ + = + =⋅ ⋅ + −⋅⋅ + =⋅ dxxlnx m xlnx m dx x xlnx m xlnx m xlndx m xlnx m dxxln m dxxlnx dxxlnx m xlnx m dxxlnx. mm mm mm mm mmm )( 1 n)( 1 1 1)( 1 n)( 1 1 )( 1 1)( 1 1 )( 1 1 )( )( 1 n)( 1 1 )( 136 1nn1 1n1n1 n1n1 1nn 1nn1n 证明: - 80 - (十五)含有双曲函数的积分(137~141) Cshx shxddxxch chxshxchxshx Cshxdxxch. += =∴ =′ += ∫∫ ∫ , )( 138 的原函数为即证明:∵ Cchx chxddxshx shxchxshxchx Cchxdxshx. += =∴ =′ += ∫∫ ∫ , )( 137 的原函数为即证明:∵ Cchxln chxd chx dx chx shxdxxth Cchxlndxxth. += = = += ∫ ∫ ∫ ∫ 1 139 证明: )( 2 )( 2 双曲余弦 双曲余弦:提示 xx xx eeshx eechx − − − = + = Cxshx Ceex Cxee dxee dxeedxxsh Cxshxdxxsh. xx xx xx xx +⋅+−= + − ⋅+−= +−−= −+= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −= ++−= − − − − ∫ ∫∫ ∫ 2 4 1 2 24 1 2 288 )2( 4 1 2 2 4 1 2 140 22 22 22 2 2 2 证明: Cxshx Ceex Cxee dxee dxeedxxch Cxshxdxxch. xx xx xx xx +⋅+= + − ⋅+= ++−= ++= ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ + = +⋅+= − − − − ∫ ∫∫ ∫ 2 4 1 2 24 1 2 288 )2( 4 1 2 2 4 1 2 141 22 22 22 2 2 2 证明: )( 2 )( 2 双曲余弦 双曲余弦:提示 xx xx eeshx eechx − − − = + = - 81 - (十六)定积分(142~147) 0 0 )( 1)( 1 )(1 1 0 )( 2 )( 1)( 1 )(1 1 0 142 == = −⋅+⋅−= ⋅−= = = ⋅= −⋅−⋅= ⋅= = == ∫∫ ∫∫ ∫∫ ∫∫ −− − −− − −− −− π π π π π π π π π π π π π π π π π π π π dxnxsindxnxcos πncos n πncos n nxcos n dnxnxsin n dxnxsin πnsin n πnsin n πnsin n nxsin n dnxnxcos n dxnxcos dxnxsindxnxcos. 综合证明①②得: 证明②: 证明①: 0 2 1 0 )]2(2[ 4 1 2 4 1 2 2 4 1 2 2 1 2. 000 )])(()([ )(2 1])()([ )(2 1 )( )(2 1)( )(2 1 1. 0 143 =⋅= = −−⋅−= ⋅−= = = ⋅=⋅ = =+= −−−− − −+−+ + −= − − −+⋅ + −=⋅ ≠ =⋅ ∫∫ ∫ ∫ ∫∫ ∫ ∫ −− − − − −− −− − − π π π π π π π π π π π π π π π π π π π π π π dxnxsinmxcosdxnxcos, πmcosπmcos m mxcos m mxdmxsin m mxdmxsin m dxmxsinmxcosdxnxsinmxcos nm πmncosπmncos mn πnmcosπnmcos nm xmncos mn xnmcos nm dxnxsinmxcos nm dxnxsinmxcos. 得:综合讨论 时当 时当证明: C)( )(2 1 )( )(2 1 100 +−⋅ − −+⋅ + −=⋅∫ xbacos ba xbacos ba dxbxcosaxsin:公式 xcosxsinxsin ⋅⋅= 22 提示: - 82 - ⎩ ⎨ ⎧ = ≠ =⋅ = ++−−⋅= ⋅+⋅= = ⋅=⋅ = =−= −−+− − −−+−+ + = − − −+⋅ + =⋅ ≠ ⎩ ⎨ ⎧ = ≠ =⋅ ∫ ∫ ∫∫ ∫ ∫ − −− − −− −− − − nmπ nm dxnxcosmxcos, π πππmsinπmsin m mx m mxsin m mxdmxcos m dxmxcosmxcosdxnxcosmxcos nm πnmsinπnmsin nm πnmsinπnmsin nm xnmsin nm xnmsin nm dxnxcosmxcos nm nmπ nm dxnxcosmxcos. π π π π π π π π π π π π π π π π π π π π 0 2 1 22 )]2( 2[ 4 1 2 12 4 1 1 2. 000 )])(( )( [ )(2 1)])(( )( [ )(2 1 )( )(2 1)( )(2 1 1. 0 144 2 , , 得:综合讨论 时当 时当证明: , , ∫ +⋅+= Cxsinxdxxcos 2 4 1 2 94 2:公式 C)( )(2 1 )( )(2 1 102 +−⋅ − ++⋅ + =⋅∫ xbasin ba xbasin ba dxbxcosaxcos:公式 ⎩ ⎨ ⎧ = ≠ =⋅ = ++−−⋅−= ⋅−⋅= = =⋅ = =+= −−−− − +−+−+ + −= − − ++⋅ + −=⋅ ≠ ⎩ ⎨ ⎧ = ≠ =⋅ ∫ ∫ ∫∫ ∫ ∫ − −− − −− −− − − nmπ nm dxnxsinmxsin, π πππmsinπmsin m mxsin m mx m mxdmxsin m dxmxsindxnxsinmxsin nm πnmsinπnmsin nm πnmsinπnmsin nm xnmsin nm xnmsin nm dxnxsinmxsin nm nmπ nm dxnxsinmxsin. π π π π π π π π π π π π π π π π π π π π 0 2 1 22 )]2( 2[ 4 1 2 4 1 2 1 1 2. 000 )])(( )( [ )(2 1)])(( )( [ )(2 1 )( )(2 1)( )(2 1 1. 0 145 2 2 , , 得:综合讨论 时当 时当证明: , , ∫ +⋅−= Cxsinxdxxsin 2 4 1 2 93 2:公式 C)( )(2 1 )( )(2 1 101 +−⋅ − ++⋅ + −=⋅∫ xbasin ba xbasin ba dxbxsinaxsin:公式 - 83 - ⎪⎩ ⎪ ⎨ ⎧ = ≠ ⋅=⋅ = ++−⋅= ⋅+⋅= = ⋅=⋅ = ++−⋅−= ⋅−⋅= = =⋅ = =+= +− − +−+ + = − − ++⋅ + =⋅ =+= −− − +−+ + −= − − ++⋅ + −=⋅ ≠ ⎪⎩ ⎪ ⎨ ⎧ = ≠ ⋅=⋅ ∫∫ ∫ ∫∫ ∫ ∫∫ ∫ ∫ ∫∫ nmπ nm dxnxcosmxcosdxnxsinmxsin, π πsinπmsin m mx m mxsin m mxdmxcos m dxmxcosmxcosdxnxcosmxcos π πsinπmsin m mxsin m mx m mxdmxsin m dxmxsindxnxsinmxsin nm sinπnmsin nm sinπnmsin nm xnmsin nm xnmsin nm dxnxcosmxcos sinπnmsin nm sinπnmsin nm xnmsin nm xnmsin nm dxnxsinmxsin nm nmπ nm dxnxcosmxcosdxnxsinmxsin. ππ ππ π ππ ππ π ππ ππ π ππ π ππ 2 0 2 1 2 0 2 0] 2[ 4 1 2 12 4 1 1 2 0 2 0] 2[ 4 1 2 4 1 2 1 1 2. 000 0] )( [ )(2 10] )( [ )(2 1 )( )(2 1)( )(2 1 000 0] )( [ )(2 10] )( [ )(2 1 )( )(2 1)( )(2 1 1. 2 0 146 00 00 0 2 00 00 0 2 0 2 0 00 0 00 0 00 , , 得:综合讨论 时当 时当证明: , , ∫ ∫ ∫ ∫ +⋅+= +⋅−= +−⋅ − ++⋅ + =⋅ +−⋅ − ++⋅ + −=⋅ Cxsinxdxxcos Cxsinxdxxsin xbasin ba xbasin ba dxbxcosaxcos xbasin ba xbasin ba dxbxsinaxsin 2 4 1 2 94 2 4 1 2 93 C)( )(2 1 )( )(2 1 102 C)( )(2 1 )( )(2 1 101 2 2 :公式 :公式 :公式 :公式 以上所用公式: - 84 - 亦同理可证证明②: 时,特别的,当 为正偶数时当 时,特别的,当 为正奇数时当 证明①: 为正偶数 的正奇数为大于 ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ dxxcosI πxdxxsinIn π n n n n x n n n n dxxsin n n n nI n xcosdxxsinIn n n n n xcos n n n n dxxsin n n n nI n I n ndxxsin n n dxxsin n ncossinπcosπsin n dxxsin n nxcosxsin n dxxsinI πInπ n n n n In n n n n I n nI dxxcosdxxsinI. π n n ππ n π π n ππ n π π n n π n π nnn π n π n π n n nn π n π n n 2 )( 0 22 1 4 3 2 31 )( 2 1 4 3 2 31 2 1 4 3 2 31 1)( 1 1 3 2 5 4 2 31 )( 3 2 5 4 2 31 3 2 5 4 2 31 1 1 1)00 22 (1 11 2 , )( 22 1 4 3 2 31 1 , )1( 3 2 5 4 2 31 1 147 2 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 2 0 2 0 2 2 0 2 2 0 211 2 0 22 0 12 0 0 1 2 2 0 2 0 ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫∫ ∫∫ = ==== ⋅⋅⋅⋅ − − ⋅ − = ⋅⋅⋅⋅ − − ⋅ − = ⋅⋅⋅⋅ − − ⋅ − = =−=== ⋅⋅⋅⋅ − − ⋅ − = −⋅⋅⋅⋅ − − ⋅ − = ⋅⋅⋅⋅ − − ⋅ − = − = − = − +⋅−⋅−= − +⋅⋅−== ⎪ ⎪ ⎩ ⎪⎪ ⎨ ⎧ =⋅⋅⋅⋅ − − ⋅ − =⋅⋅⋅ − − ⋅ − = − = == − − −−− −− − - 85 - 附录:常数和基本初等函数导数公式 2 2 2 2 a xx xx 2 2 1μμ x arccotx. x arctanx. x arccosx. x arcsinx. x lnx. a lnax xlog. ee. alnaaa. cotxcscxcscx. tanxsecxsecx7. xcsccotx6. xsectanx5 sinxcosx. cosxsinx3. 0)(xxμx . C 0C. + −=′ + =′ −− =′ − =′ =′ > ⋅ =′ =′ ⋅=′ ⋅−=′ ⋅=′ −=′ =′ −=′ =′ ⋅=′ =′ − 1 1)( 16 1 1)( 15 1 1)( 14 1 1)( 13 1)( 12 0)( 1)( 11 ) ( 10 )( ) ( 9 )( 8 )( )( )( . )( 4 )( ≠ )( 2 )( ) ( 1 为常数 为常数查看更多