【数学】2018届一轮复习苏教版9-3圆的方程教案(江苏专用)
9.3 圆的方程
圆的定义与方程
定义
平面内到定点的距离等于定长的点的集合叫圆
方
程
标准
(x-a)2+(y-b)2=r2(r>0)
圆心(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0
充要条件:D2+E2-4F>0
圆心坐标:(-,-)
半径r=
【知识拓展】
1.确定圆的方程的方法和步骤
确定圆的方程主要方法是待定系数法,大致步骤为
(1)根据题意,选择标准方程或一般方程;
(2)根据条件列出关于a,b,r或D,E,F的方程组;
(3)解出a,b,r或D,E,F代入标准方程或一般方程.
2.点与圆的位置关系
点和圆的位置关系有三种.
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)
(1)点在圆上:(x0-a)2+(y0-b)2=r2;
(2)点在圆外:(x0-a)2+(y0-b)2>r2;
(3)点在圆内:(x0-a)2+(y0-b)2
0.( √ )
(4)方程x2+2ax+y2=0一定表示圆.( × )
(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x+y+Dx0+Ey0+F>0.( √ )
1.(教材改编)圆心是(-2,3),且经过原点的圆的标准方程为______________.
答案 (x+2)2+(y-3)2=13
解析 易得r=.
2.方程x2+y2+mx-2y+3=0表示圆,则m的范围是________________.
答案 (-∞,-2)∪(2,+∞)
解析 将x2+y2+mx-2y+3=0化为圆的标准方程得(x+)2+(y-1)2=+1-3.
由其表示圆可得-2>0,解得m<-2或m>2.
3.(2016·扬州检测)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以点C为圆心,为半径的圆的方程为______________.
答案 x2+y2+2x-4y=0
解析 将方程分离参数a可得a(x+1)-(x+y-1)=0,方程表示过两直线的交点,由得交点为(-1,2),故圆的方程为(x+1)2+(y-2)2=5,即x2+y2+2x-4y=0.
4.(教材改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.
答案 x2+y2-4x-6=0
解析 设圆心坐标为C(a,0),
∵点A(-1,1)和B(1,3)在圆C上,∴CA=CB,
即=,解得a=2,
∴圆心为C(2,0),半径CA==,
∴圆C的方程为(x-2)2+y2=10,即x2+y2-4x-6=0.
5.(2016·浙江)已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a
=0表示圆,则圆心坐标是______,半径是______.
答案 (-2,-4) 5
解析 由已知方程表示圆,则a2=a+2,
解得a=2或a=-1.
当a=2时,方程不满足表示圆的条件,故舍去.
当a=-1时,原方程为x2+y2+4x+8y-5=0,
化为标准方程为(x+2)2+(y+4)2=25,
表示以(-2,-4)为圆心,半径为5的圆.
题型一 求圆的方程
例1 (1)(2016·天津)已知圆C的圆心在x轴的正半轴上,点M(0,)在圆C上,且圆心到直线2x-y=0的距离为,则圆C的方程为________________.
(2)(2015·课标全国Ⅰ)一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.
答案 (1)x2+y2-4x-5=0 (2)2+y2=
解析 (1)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,
所以圆心到直线2x-y=0的距离d==,
解得a=2,所以圆C的半径r=CM==3,
所以圆C的方程为(x-2)2+y2=9,
即x2+y2-4x-5=0.
(2)由题意知圆过(4,0),(0,2),(0,-2)三点,
(4,0),(0,-2)两点的垂直平分线方程为
y+1=-2(x-2),
令y=0,解得x=,圆心为,半径为.
所以圆的标准方程为(x-)2+y2=.
思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.
(2)待定系数法
①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;
②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
(2016·苏州一模)圆心在直线2x-y-7=0上的圆C与y轴交于A(0,-4),B(0,-2)两点,则圆C的标准方程为________________.
答案 (x-2)2+(y+3)2=5
解析 设圆的标准方程为(x-a)2+(y-b)2=r2,
故解得
半径r==,
故圆C的标准方程为(x-2)2+(y+3)2=5.
题型二 与圆有关的最值问题
例2 (2016·盐城检测)已知点(x,y)在圆(x-2)2+(y+3)2=1上,求x+y的最大值和最小值.
解 设t=x+y,则y=-x+t,t可视为直线y=-x+t的纵截距,∴x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时的纵截距.
由直线与圆相切得圆心到直线的距离等于半径,
即=1,
解得t=-1或t=--1.
∴x+y的最大值为-1,最小值为--1.
引申探究
1.在例2的条件下,求的最大值和最小值.
解 可视为点(x,y)与原点连线的斜率,的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.
设过原点的直线的方程为y=kx,由直线与圆相切得圆心到直线的距离等于半径,即=1,解得k=-2+或k=-2-.
∴的最大值为-2+,最小值为-2-.
2.在例2的条件下,求的最大值和最小值.
解 =,求它的最值可视为求点(x,y)到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为,
∴的最大值为+1,最小值为-1.
思维升华 与圆有关的最值问题的常见类型及解题策略
(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.
(2)与圆上点(x,y)有关代数式的最值的常见类型及解法.①形如u=型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;②形如t=ax+by型的最值问题,可转化为动直线的截距的最值问题;③形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点(a,b)的距离平方的最值问题.
(2016·扬州模拟)已知实数x,y满足方程x2+y2-4x+1=0.求:
(1)的最大值和最小值;
(2)y-x的最小值;
(3)x2+y2的最大值和最小值.
解 (1)如图,方程x2+y2-4x+1=0表示以点(2,0)为圆心,以为半径的圆.
设=k,即y=kx,则圆心(2,0)到直线y=kx的距离为半径,即直线与圆相切时,斜率取得最大值、最小值.
由=,解得k2=3,
∴kmax=,kmin=-.
(2)设y-x=b,则y=x+b,当且仅当直线y=x+b与圆切于第四象限时,截距b取最小值,
由点到直线的距离公式,得=,
即b=-2±,
故(y-x)min=-2-.
(3)x2+y2是圆上的点与原点的距离的平方,故连结OC,
与圆交于B点,并延长交圆于C′,则
(x2+y2)max=(OC′)2=(2+)2=7+4,
(x2+y2)min=OB2=(2-)2=7-4.
题型三 与圆有关的轨迹问题
例3 (2016·盐城模拟)已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
解 (1)设AP的中点为M(x,y),
由中点坐标公式可知,P点坐标为(2x-2,2y).
因为P点在圆x2+y2=4上,
所以(2x-2)2+(2y)2=4,
故线段AP中点的轨迹方程为(x-1)2+y2=1.
(2)设PQ的中点为N(x,y),在Rt△PBQ中,
PN=BN.
设O为坐标原点,连结ON,则ON⊥PQ,
所以OP2=ON2+PN2=ON2+BN2,
所以x2+y2+(x-1)2+(y-1)2=4.
故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.
思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法
(1)直接法,直接根据题目提供的条件列出方程.
(2)定义法,根据圆、直线等定义列方程.
(3)几何法,利用圆的几何性质列方程.
(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.
(2016·天津模拟)设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON
为两边作平行四边形MONP,求点P的轨迹.
解 如图所示,设P(x,y),N(x0,y0),
则线段OP的中点坐标为,线段MN的中点坐标为.
由于平行四边形的对角线互相平分,
故=,=.
从而
又N(x+3,y-4)在圆上,故(x+3)2+(y-4)2=4.
因此所求轨迹为圆:(x+3)2+(y-4)2=4,
但应除去两点和(点P在直线OM上的情况).
19.利用几何性质巧设方程求半径
典例 在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上,求圆C的方程.
思想方法指导 本题可采用两种方法解答,即代数法和几何法.
(1)一般解法(代数法):可以求出曲线y=x2-6x+1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.
(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题.
规范解答
解 一般解法 (代数法)曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3-2,0),设圆的方程是x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
则有解得
故圆的方程是x2+y2-6x-2y+1=0.
巧妙解法 (几何法)曲线y=x2-6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3-2,0).
故可设C的圆心为(3,t),
则有32+(t-1)2=(2)2+t2,解得t=1.
则圆C的半径为=3,
所以圆C的方程为(x-3)2+(y-1)2=9,
即x2+y2-6x-2y+1=0.
1.(2016·南通模拟)已知点A(1,-1),B(-1,1),则以线段AB为直径的圆的标准方程是________.
答案 x2+y2=2
解析 AB的中点坐标为(0,0),
AB==2,
∴圆的标准方程为x2+y2=2.
2.已知圆M的圆心M在y轴上,半径为1,直线l:y=2x+2被圆M所截得的弦长为,且圆心M在直线l的下方,则圆M的标准方程是__________.
答案 x2+(y-1)2=1
解析 点M到l的距离d= =.
设M(0,a),所以=,
所以a=1或a=3.
又因为a<2×0+2=2,所以a=1.
所以圆M的标准方程为x2+(y-1)2=1.
3.(2016·徐州质检)设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,则原点与圆的位置关系是________________.
答案 原点在圆外
解析 将圆的一般方程化成标准方程为(x+a)2+(y+1)2=2a,因为0<a<1,
所以(0+a)2+(0+1)2-2a=(a-1)2>0,
即>,所以原点在圆外.
4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是________________.
答案 (x-2)2+(y+1)2=1
解析 设圆上任一点坐标为(x0,y0),
x+y=4,连线中点坐标为(x,y),
则⇒
代入x+y=4,得(x-2)2+(y+1)2=1.
5.已知圆M的圆心在x轴上,且圆心在直线l1:x=-2的右侧,若圆M截直线l1所得的弦长为2,且与直线l2:2x-y-4=0相切,则圆M的标准方程为_____________.
答案 (x+1)2+y2=4
解析 由已知,可设圆M的圆心坐标为(a,0),a>-2,
半径为r,得
解得满足条件,
所以圆M的标准方程为(x+1)2+y2=4.
6.若圆x2+y2-2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a-b的取值范围是________.
答案 (-∞,4)
解析 圆的方程可化为(x-1)2+(y+3)2=10-5a,
可知圆心为(1,-3),且10-5a>0,即a<2.
∵圆关于直线y=x+2b成轴对称图形,
∴点(1,-3)在直线上,则b=-2.
∴a-b=2+a<4.
7.(2016·常州模拟)已知圆C过点(-1,0),且圆心在x轴的负半轴上,直线l:y=x+1被该圆所截得的弦长为2,则过圆心且与直线l平行的直线方程为________________.
答案 x-y+3=0
解析 设圆的方程为(x-a)2+y2=r2(a<0),
因为圆C过点(-1,0),且直线l:y=x+1被该圆所截得的弦长为2,
所以
解得即圆心坐标为(-3,0),
则所求直线为y=x+3,即x-y+3=0.
8.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________.
答案 x+y-2=0
解析 当圆心与点P的连线和过点P的直线垂直时,符合条件.圆心O与点P连线的斜率k=1,
所求直线方程为y-1=-(x-1),即x+y-2=0.
9.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为______________________.
答案 (x-2)2+(y-1)2=4
解析 设圆C的圆心为(a,b)(a>0,b>0),
由题意得a=2b>0,且a2=()2+b2,
解得a=2,b=1.
∴所求圆的标准方程为(x-2)2+(y-1)2=4.
10.(2016·无锡模拟)已知两点A(-1,0),B(0,2),点P是圆(x-1)2+y2=1上任意一点,则△PAB面积的最大值与最小值分别是________________.
答案 2+,2-
解析 如图,圆心(1,0)到直线AB:2x-y+2=0的距离d=,
故圆上的点P到直线AB的距离的最大值是+1,最小值是-1,
又AB=,故△PAB面积的最大值和最小值分别是2+,2-.
11.已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段的长为4,半径小于5.
(1)求直线PQ与圆C的方程;
(2)若直线l∥PQ,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.
解 (1)由题意知直线PQ的方程为x+y-2=0.
设圆心C(a,b),半径为r,
由于线段PQ的垂直平分线的方程是y-=x-,
即y=x-1,所以b=a-1.①
由圆C在y轴上截得的线段的长为4,
知r2=(2)2+a2,
可得(a+1)2+(b-3)2=12+a2,②
由①②得a=1,b=0或a=5,b=4.
当a=1,b=0时,r2=13,满足题意,
当a=5,b=4时,r2=37,不满足题意.
故圆C的方程为(x-1)2+y2=13.
(2)设直线l的方程为y=-x+m(m≠2),
A(x1,m-x1),B(x2,m-x2).
由题意可知OA⊥OB,即·=0,
∴x1x2+(m-x1)(m-x2)=0,
化简得2x1x2-m(x1+x2)+m2=0.③
由得2x2-2(m+1)x+m2-12=0,
∴x1+x2=m+1,x1x2=,
代入③,得m2-12-m·(1+m)+m2=0,
∴m=4或m=-3,经检验都满足题意,
∴直线l的方程为x+y-4=0或x+y+3=0.
12.在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.
(1)求圆心P的轨迹方程;
(2)若P点到直线y=x的距离为,求圆P的方程.
解 (1)设P(x,y),圆P的半径为r.
则y2+2=r2,x2+3=r2.
∴y2+2=x2+3,即y2-x2=1.
∴圆心P的轨迹方程为y2-x2=1.
(2)设P点的坐标为(x0,y0),
则=,即|x0-y0|=1.
∴y0-x0=±1,即y0=x0±1.
①当y0=x0+1时,由y-x=1,得(x0+1)2-x=1.
∴∴r2=3.
∴圆P的方程为x2+(y-1)2=3.
②当y0=x0-1时,由y-x=1,
得(x0-1)2-x=1.
∴∴r2=3.
∴圆P的方程为x2+(y+1)2=3.
综上所述,圆P的方程为x2+(y±1)2=3.
13.已知M为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).
(1)求MQ的最大值和最小值;
(2)若M(m,n),求的最大值和最小值.
解 (1)由圆C:x2+y2-4x-14y+45=0,
可得(x-2)2+(y-7)2=8,
所以圆心C的坐标为(2,7),半径r=2.
又QC==4.
所以(MQ)max=4+2=6,
(MQ)min=4-2=2.
(2)可知表示直线MQ的斜率,
设直线MQ的方程为y-3=k(x+2),
即kx-y+2k+3=0,=k.
由直线MQ与圆C有交点,
所以≤2,
可得2-≤k≤2+,
所以的最大值为2+,最小值为2-.