江西省2020届高三下学期调研考试(三)数学(文)(扫描版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

江西省2020届高三下学期调研考试(三)数学(文)(扫描版)

书书书 !"#$[% 1    &] 2019—2020$'()'*+,-.()) !"#$%&'( 1.【/0】C 【12】34 A={(x,y) x=05 x=2,y∈R},B={(x,y) y2=2x},67 A∩B={(0,0),(2, 2),(2,-2)},89 C. 2.【/0】B 【12】(a+2i)2=a2-4+4ai,34(a+2i)2(a∈R):;<#,67 a2-4=0 4a≠{ 0 ,67 a=±2,= a 槡+i= ±2+i= 5,89 B. 3.【/0】D 【12】> a=2 3,b=3 4,?@A A,> a=-2,b=-1 2,?@A B,> a=-2,b=1 2,?@A C,= a<b<1?B(a-1)(b-1)>0,CDB ab+1>a+b,89 D. 4.【/0】D 【12】E x2+y2-2x+4y=0FGHIJ C:x2 2m- y2 m+1=1(m>0)KLMNOJPQ,RES (1,-2)TNOJ y=- m+1 2槡m xU,67 m+1 2槡m =2,m=1 7,89 D. 5.【/0】A 【12】34 a,b: V W X Y,a+b=(槡2,-1),Z [ ] B 2a· b=1,6 7 a-b = a2-2a·b+b槡 2 =1,89 A. 6.【/0】D 【12】=^_B(a2+a10)(2a3+a9)=2a6(a3+a3+a9)=2a6(a3 +2a6)=4(a3 +4)=12,?B a3=-1,67 S5=5a3=-5,89 D. 7.【/0】C 【12】` A,B,C,D,Ea4 2b(Lb 2c,Lb 3c),def:(AB,CDE),(AC,BDE),(AD, BCE),(AE,BCD),(BC,ADE),(BD,ACE),(BE,ACD),(CD,ABE),(CE,ABD),(DE,ABC),g 10h,A,BTiLjklKdef:(AB,CDE),(CD,ABE),(CE,ABD),(DE,ABC),g 4h,6 76mno P=4 10=2 5,89 C. 8.【/0】C 【12】= f(x)= 1,x>0 0,x=0 -1,x{ <0 ,g(x)=sinπx,?Bp x>0q,g(f(x))=g(1)=sinπ=0,p x=0 q,g(f(x))=g(0)=sin0=0,p x<0q g(f(x))=g(-1)=sin(-π)=0,67 Ars;p x >0q,f(x)=1,f(f(x))=f(1)=1,f(f(x))=f(x)tu,p x=0q,f(0)=0,f(f(0))=f(0)= !"#$[% 2    &] 0,f(f(x))=f(x)tu,p x<0q,f(x)=-1,f(f(x))=f(-1)=-1,f(f(x))=f(x)tu,6 7 Brs,= f(3 2)g(3 2)=-1,?v Cwx,= g(x)≥ -1,g(x)+2≥1,?v f(g(x)+2)=1 rs,89 C. 9.【/0】A 【12】= f(x)+f(-x)=2?B 2ax2+2b=2,67 a=0,b=1,f(x)=x3 -3x+1,f′(x)=3x2 - 3,f(1)=-1,f′(1)=0,67 f(x)KyzT x=1{K|J]}4 y=-1,89 A. 10.【/0】D 【12】=}~y?v,n€‚ƒc#,m€„ƒc#,…†“„ƒ)j‡ˆ‰,‚ƒ)c aLj”,Š‹Œ#4 s,R s=3m+n 3,67①Ž s=3m+n 3,p s=100qd}~,‘’ n,89 D. 11.【/0】C 【12】> BC“ O,BO“ F,”• OD,OE,FE,DF,R∠ODE–:—J DE˜ AC6t™.Š AB=4,R OD=2,OF=1,OE=2,DF 槡= 3,EF= OE2+OF槡 2 槡= 5,DE= DF2+EF槡 2 槡=2 2,6 7∠ODE=π 4,š—J DE˜ AC6t™K›œ4槡2 2,89 C. !" # $ % &' 12.【/0】B 【12】= AB⊥xž?B →AB· →AF= →AB 2,67 →AB =2b 3,Ÿ →AB →FB =tan∠BFA=b c,67 →FB =2c 3,67A(5c 3,-2b 3), ¡E CK]}B25c2 9a2 +4 9=1,67 e=槡5 5,89 B. 13.【/0】[1 2,+∞) 【12】p x≥1q,f(x)=x2≥1,¢ a=0,x<1q,f(x)=0,f(x)K£¤: R;¢ a<0,x<1q,f(x) >2a,f(x)K£¤: R,¢ a>0,x<1q,f(x)<2a,67p 2a≥1q,f(x)K£4 R,67 aK> ¥¦:[1 2,+∞). 14.【/0】9 【12】=a2 n+1 an =2an+an+1B a2 n+1-anan+1-2a2 n=0,š(an+1+an)(an+1-2an)=0,34 an>0, 67 an+1-2an=0,an+1=2an,an=a2·2n-2=2n-2,a8 =64,a9 =128,67§ an>100K¨‚K n4 9. 15.【/0】 槡23π !"#$[% 3    &] 【12】©’ f(x)Kyz,=yz?v槡3 2≤a<1,x1+x2=2×π 6=π 3,x2 +x3 =2×2π 3 =4π 3,x3 + x4=2×7π 6 =7π 3,ª«B x1+2x2+2x3+x4=4π,67 a(x1+2x2+2x3+x4)K¨‚4 槡23π. 16.【/0】槡7 2 【12】=^_?B AD=DC=1,AB⊥AD,34 AP⊥AC,67)¬ P-ACD,AP⊥®¯ ADC,`)¬P-ACD°t)¬±,R²)¬±K³•´–:)¬ P-ACDK³•´,´S :)¬±Uµ®¯³•EES”JK“,®¯³•E¶· r=1 2· 槡3 sin120°=1,Ÿ AP 槡= 3,6 7)¬ P-ACD³•´¶· R= 12+(槡3 2)槡 2 =槡7 2. 17.1:(1)=€#†¸¹-#†?B 珋x=3,∑ 5 i=1 (xi-珋x)2=10, ∑ 5 i=1 (yi-珋y)槡 2≈10.70, =∑ 5 i=1 xi=15,∑ 5 i=1 yi=74.6,?B 珋x=3,珋y=14.92, 67∑ 5 i=1 xiyi-5珋x珋y=190.2-5×3×14.92=-33.6, 67 r≈ -33.6 10.70×3.16≈ -0.99, 34 y˜ xKªFº#O»4 -0.99,¼½ y˜ xKªF}¾ªp(,¿À?7ÁJÂÃÄÅ ÆÇÈ y˜ xKFº.(6a) (2)^b= ∑ 5 i=1 xiyi-5珋x珋y ∑ 5 i=1 x2 i-5珋x2 = -33.6 55-5×9=-3.36, R ^a=珋y-^b珋x=14.92+3.36×3=25, 67 yFG xKÃÄ]} ^y=-3.36x+25.(10a) p x=6q,^y=-3.36×6+25=4.84, 67ÉÊ 2014'tuKË̍ÍÎËÌ6ÏÐÑ4 4.84%.(12a) 18.1:(1)= c(tanA tanC+1)-9b=0¸rœÒÓ?B sinC·sinAcosC+sinCcosA sinCcosA -9sinB=0,(2a) šsin(A+C) cosA -9sinB=0, 34 sin(A+C)=sin(π-B)=sinB,Ô sinB≠0, 67 cosA=1 9.(4a) (2)34 cosA=1 9,67 sinA= 1-cos2槡 A= 槡45 9 , !"#$[% 4    &] 34 ADa™ A,67 sin∠BAD=sin∠CAD= 1-cosA 槡 2 = 1-1 9 槡2 =2 3, = S△ABC =S△ADB +S△ADC,?B 1 2bcsinA=1 2c·ADsin∠BAD+1 2b·ADsin∠CAD, 1 2bc· 槡45 9 =1 2c·槡5· 2 3+1 2b·槡5· 2 3,ÕÓB 2 3bc=b+c, 67 1 b+1 c=2 3.(12a) 19.1:(1)Š AC1K“4 F,”• BE˜ ACÖG G,R“ G4 AC“, ”• DF,FG,R FG∥CC1,Ô FG=1 2CC1.Ÿ D4 BB1K“, 67 DB∥FG,Ô DB=FG, 67×[Ø BDFG4Ù×[Ø,67 BG∥DF, ! " # $ % %! !! #! & ' 34 AA1⊥®¯ ABC,67¯ ABC⊥¯ ACC1A1, 34 AB=BC,G4 AC“,67 BG⊥¯ ACC1A1, 67 DF⊥¯ ACC1A1.Ÿ DF¯ AC1D, 67¯ AC1D⊥¯ ACC1A1.(6a) (2)=(1)v BE∥DF,67“ E,BÚ¯ ADC1KÛܪÝ, 67 V)¬E-ADC1 =V)¬B-ADC1 =V)¬A-BDC1. = AB=BC=2,AC 槡=22,?B AB⊥BC, 34¯ ABC⊥¯ BCC1B1,AB⊥¯ BCC1B1, Ÿ△BDC1K¯Þ S=1 2×1×2=1, 67 V)¬A-BDC1 =1 3×AB×S=1 3×2×1=2 3, 67)¬ E-ADC1KßÞ4 2 3.(12a) 20.1:(1)y2=2px˜ y=x+1àuB y2-2py+2p=0 34áâJ C˜—J y=x+1ãfLjäg“, 67 Δ=(2p)2-8p=0,p=2, 67áâJ CK]}4 y2=4x.(3a) (2)①Š A(y2 1 4,y1),B(y2 2 4,y2),R kOA+kOB =4 y1 +4 y2 =1, 67 y1y2 y1+y2 =4,Ÿ kAB =y1-y2 y2 1 4-y2 2 4 = 4 y1+y2 , 67—J ABK]}4 y-y1= 4 y1+y2 (x-y2 1 4), !"#$[% 5    &] š y= 4 y1+y2 x+y1- y2 1 y1+y2 = 4 y1+y2 x+ y1y2 y1+y2 = 4 y1+y2 x+4, p x=0q y=4,67—J ABåғ(0,4).(7a) ②Š A(y2 1 4,y1),B(y2 2 4,y2),R kPA+kPB =y1-y0 y2 1 4-y2 0 4 +y2-y0 y2 2 4-y2 0 4 = 4 y1+y0 + 4 y2+y0 =0, 67 y1+y0+y2+y0=0,y1+y2=-2y0, 67—J ABKæo kAB =y1-y2 y2 1 4-y2 2 4 = 4 y1+y2 =-2 y0 .š—J ABKæo4ҝ -2 y0 .(12a) 21.1:(1)34 f(x)=ax2(lnx+1 2)-xlnx+1, 67 f′(x)=2axlnx+2ax-lnx-1=(2ax-1)(lnx+1)(x>0), ①¢ a≤0,R 2ax-1<0,p x∈(0,1 e)q,f′(x)>0,f(x):çè#, p x∈(1 e,+∞)q,f′(x)<0,f(x):éè#; ②¢ 0<a<e 2,š 1 2a>1 e, p x∈(0,1 e)ê x∈(1 2a,+∞)q,f′(x)>0,f(x):çè#, p x∈(1 e,1 2a)q,f′(x)<0,f(x):éè#. ëU?B,p a≤0q,f(x)T(0,1 e)UV+ìç,T(1 e,+∞)UV+ìé; p 0<a<e 2q,f(x)T(0,1 e)ê(1 2a,+∞)UV+ìç,T(1 e,1 2a)UV+ìé.(6a) (2)p a=1q,íî f(x)>3 2x2-2x+1+sinx, ãïî f(x)≥ 3 2x2-2x+2,šî(x2-x)(lnx-1+1 x)≥0, 34 x≥1,67 x2-x≥0,Š g(x)=lnx-1+1 x, R g′(x)=1 x-1 x2 =x-1 x2 ≥0, 67 g(x)T[1,+∞)U:çè#,g(x)≥g(1)=0,lnx-1+1 x≥0, 67(x2-x)(lnx-1+1 x)≥0, 3ð f(x)>3 2x2-2x+1+sinxtu.(12a) !"#$[% 6    &] 22.1:(1)ρ2 槡=2+22ρsin(θ+π 4)=2+2ρcosθ+2ρsinθ, = ρ2=x2+y2,ρcosθ=x,ρsinθ=y,BIJ CK—™ñò]}4 x2+y2=2+2x+2y, š(x-1)2+(y-1)2=4, Š x-1=2cosφ,y-1=2sinφ,BIJ CK¹#]} x=1+2cosφ y=1+2sin{ φ (φ4¹#).(5a) (2)Š P(1+2cosφ1,1+2sinφ1),Q(1+2cosφ2,1+2sinφ2), Š M(x,y),R x=1+cosφ1+cosφ2,y=1+sinφ1+sinφ2, = AP 2 + AQ 2 =40,B (2cosφ1-2)2 +(2sinφ1-2)2 +(2cosφ2-2)2 +(2sinφ2-2)2 =40, ÕÓB 1+cosφ1+cosφ2+1+sinφ1+sinφ2=0,š x+y=0, 67“ MóT—J x+y=0U,67ð—JK—™ñò]}4 x+y=0.(10a) 23.1:(1)p m=2q,f(x)= x-2 - x-4 = -2,x<2 2x-6,2≤x≤4 2, x      >4 , p x<2q,-2>1¤tu, p 2≤x≤4q,= 2x-6>1,B 7 2<x≤4, p x>4q,2>1tu, 67¤Ýô f(x)>1K1õ4(7 2,+∞).(5a) (2)34 f(x) = x-m - x-2m ≤ (x-m)-(x-2m) = m , 67 - m ≤f(x)≤ m , Ÿ a+ 1 (a-b)b=(a-b)+b+ 1 (a-b)b≥3 3 (a-b)b· 1 (a-b)槡 b=3, p a-b=b= 1 (a-b)b,š a=2,b=1q>Ýö, ¢P÷ø a>b>0Kù_ú# a,b,FG xK]} f(x)=a+ 1 (a-b)bK1õ4, R m <3, 67 mK>¥¦:(-3,3).(10a).
查看更多

相关文章

您可能关注的文档