- 2021-06-15 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017-2018学年甘肃省武威市第六中学高二下学期寒假学习质量检测数学文试题(Word版)
2017-2018学年甘肃省武威市第六中学高二下学期寒假学习质量检测 数 学 试 卷(文) 一、选择题 1.“”是“”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 2.下表是某厂1—4月份用水量(单位:百吨)的一组数据: 月份 1 2 3 4 用水量 4.5 4 3 2.5 由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程为 ,则等于 A.10.5 B.5.15 C.5.2 D.5.25 3.双曲线的两个焦点分别是,,双曲线上一点到焦点的距离是 12,则点到焦点的距离是 A.17 B.7 C.7或17 D.2或22 4.过点(3,0)且与轴相切的圆的圆心的轨迹为 A.圆 B.椭圆 C.直线 D.抛物线 5.已知椭圆C的左、右焦点坐标分别是(-,0),(,0),离心率是,则椭圆C的 方程为 A. B. C. D. 6.设抛物线上一点到轴的距离是4,则点到该抛物线焦点的距离是 A.4 B.6 C.8 D.12 7.抛物线的准线方程是 A. B. C. D. 8.若是2和8的等比中项,则圆锥曲线的离心率为 A. B. C.或 D.或 9.函数在区[-4,4]上的最大值为 A.10 B.-71 C.-15 D.-22 10.抛物线上的点到直线距离的最小值是 A. B. C. D.3 11.在平面直角坐标系中,是椭圆上的一个动点,点(1,1),(0,1), 则的最大值为 A.5 B.4 C.3 D.2 12.设是函数的导函数,的图象如图所示,则的图象最有可能的是 二、填空题 13.命题“任意两个等边三角形都全等”的否定是 . 14.设中心在原点的椭圆与双曲线有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程为_____________. 15.已知,则= . 16.动圆过点与直线相切,则动圆圆心的轨迹方程是 . 学校 ____ 班级 _____ 姓名 _______ 考号______________ 密 封 线 内 不 准 答 题 武威六中高二年级寒假学习质量检测 数 学 试 卷(文)答 题 卡 一.填空题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 二.填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13. 14.____________________ 15. 16.____________________ 三、解答题 17.从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表: 身高达标 身高不达标 总计 积极参加体育锻炼 40 75 不积极参加体育锻炼 10 总计 100 (1)请完成上表; (2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(的观察值精确到0.001)? 参考: 0.15 0.10 2. 072 2.706 18.已知命题表示焦点在轴上的椭圆,命题 表示双曲线;或为真,且为假,求的取值范围. 19.抛物线顶点在原点,焦点在轴上,且过点(4,4)焦点为; (1)求抛物线的焦点坐标和标准方程; (2) 是抛物线上一动点,点是的中点,求点的轨迹方程. 20.已知函数在处取得极值. (1)求常数的值; (2)求函数的单调区间与极值. 21.在平面直角坐标系,动点到两点的距离之和等于4,设点的轨迹为曲线,直线过点(-1,0)且与曲线交于两点. (1)求曲线的轨迹方程; (2)Δ的面积是否存在最大值?若存在,求出Δ的面积;若不存在,说明理由. 22.已知函数. (1)若函数的图象在处的切线斜率为1,求实数的值; (2)在(1)的条件下,求函数的单调区间; (3)若函数在上是减函数,求实数的取值范围.查看更多