高考数学 17-18版 第4章 热点探究训练2

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学 17-18版 第4章 热点探究训练2

热点探究训练(二)‎ ‎1.设函数f(x)=(a∈R).‎ ‎(1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;‎ ‎(2)若f(x)在[3,+∞)上为减函数,求a的取值范围. 【导学号:62172116】‎ ‎[解] (1)对f(x)求导得f′(x)=‎ ‎=. 3分 因为f(x)在x=0处取得极值,所以f′(0)=0,即a=0.‎ 当a=0时,f(x)=,f′(x)=,故f(1)=,f′(1)=,从而f(x)在点(1,f(1))处的切线方程为y-=(x-1),化简得3x-ey=0. 7分 ‎(2)由(1)知f′(x)=,‎ 令g(x)=-3x2+(6-a)x+a,‎ 由g(x)=0解得x1=,x2=. 9分 当x0,即f′(x)>0,故f(x)为增函数;‎ 当x>x2时,g(x)<0,即f′(x)<0,故f(x)为减函数.11分 由f(x)在[3,+∞)上为减函数,知x2=≤3,解得a≥-.故a的取值范围为. 14分 ‎2.(2017·苏州模拟)设函数f(x)=-k(k为常数,e=2.718 28…是自然对数的底数).‎ ‎(1)当k≤0时,求函数f(x)的单调区间;‎ ‎(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.‎ ‎[解] (1)函数y=f(x)的定义域为(0,+∞).‎ f′(x)=-k ‎=-=.‎ 由k≤0可得ex-kx>0,‎ 所以当x∈(0,2)时,f′(x)<0,函数y=f(x)单调递减,当x∈(2,+∞)时,f′(x)>0,函数y=f(x)单调递增.‎ 所以f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞). 6分 ‎(2)由(1)知,k≤0时,函数f(x)在(0,2)内单调递减,‎ 故f(x)在(0,2)内不存在极值点;‎ 当k>0时,设函数g(x)=ex-kx,x∈[0,+∞).‎ 因为g′(x)=ex-k=ex-eln k,‎ 当00,y=g(x)单调递增,‎ 故f(x)在(0,2)内不存在两个极值点;‎ 当k>1时,‎ 得x∈(0,ln k)时,g′(x)<0,函数y=g(x)单调递减,‎ x∈(ln k,+∞)时,g′(x)>0,函数y=g(x)单调递增.‎ 所以函数y=g(x)的最小值为g(ln k)=k(1-ln k).‎ 函数f(x)在(0,2)内存在两个极值点,‎ 当且仅当解得e0).‎ 当a>0时,f(x)的单调增区间为(0,1],减区间为[1,+∞);‎ 当a<0时,f(x)的单调增区间为[1,+∞),减区间为(0,1];‎ 当a=0时,f(x)不是单调函数. 4分 ‎(2)由f′(2)=-=1得a=-2,∴f′(x)=.‎ ‎∴g(x)=x3+x2-2x,‎ ‎∴g′(x)=3x2+(m+4)x-2.‎ ‎∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2,‎ ‎∴ 由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,所以有: ‎∴-f(1),即-ln x+x-1>0,∴ln x
查看更多

相关文章