专题30+空间点、线、面的位置关系(题型专练)-2019年高考数学(文)热点题型和提分秘籍

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

专题30+空间点、线、面的位置关系(题型专练)-2019年高考数学(文)热点题型和提分秘籍

‎1.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定3个平面。其中正确的序号是(  )‎ A.① B.①④‎ C.②③ D.③④‎ ‎【答案】A ‎2.如图所示的是正方体或四面体,P,Q,R,S分别是所在棱的中点,这四个点不共面的是(  )‎ A B C D ‎【解析】A中PS∥QR,故共面;B中PS与QR相交,故共面;C中四边形PQRS是平行四边形,所以共面,故选D。‎ ‎【答案】D ‎3.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是(  )‎ A.AB∥CD B.AB与CD异面 C.AB与CD相交 D.AB∥CD或AB与CD异面或AB与CD相交 ‎【解析】若三条线段共面,如果AB,BC,CD构成等腰三角形,则直线AB与CD相交,否则直线AB与CD平行;若不共面,则直线AB与CD是异面直线,故选D。 ‎ ‎【答案】D ‎7.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是(  )‎ A.l1⊥l4‎ B.l1∥l4‎ C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定 ‎【答案】D ‎8.以下四个命题中,‎ ‎①不共面的四点中,其中任意三点不共线;‎ ‎②若点A,B,C,D共面,点A,B,C, E共面,则点A,B,C,D,E共面;‎ ‎③若直线a,b共面,直线a,c共面,则直线b,c共面;‎ ‎④依次首尾相接的四条线段必共面.‎ 正确命题的个数是(  )‎ A.0 B.1 C.2 D.3‎ ‎【答案】B ‎【解析】①显然是正确的;②中若A,B,C三点共线,则A,B,C,D,E五点不一定共面;③中构造长方体(或正方体),如图所示,显然b,c异面,故不正确;④中空间四边形中四条线段不共面,故只有①正确.‎ ‎9. 一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:‎ ‎①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.‎ 以上四个命题中,正确命题的序号是________.‎ ‎【答案】①③‎ ‎10.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.‎ ‎【答案】4‎ ‎【解析】EF与正方体左、右两侧面均平行,所以与EF相交的平面有4个.‎ ‎11.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.‎ ‎【答案】 因为圆柱的轴截面ABB1A1是正方形,所以C1D=AD,‎ 所以直线AC1与AD所成角的正切值为,所以异面直线AC1与BC所成角的正切值为.‎ ‎12.如图,在矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下列四个命题中不正确的是________.(填序号)‎ ‎①BM是定值;‎ ‎②点M在某个球面上运动;‎ ‎③存在某个位置,使DE⊥A1C;‎ ‎④存在某个位置,使MB∥平面A1DE.‎ ‎【答案】③‎ ‎【解析】取DC的中点F,连接MF,BF,则MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.‎ 由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB是定值,所以M是在以B为球心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;若存在某个位置,使DE⊥A1C,则因为DE2+CE2=CD2,即CE⊥DE,因为A1C∩CE=C,则DE⊥平面A1CE,所以DE⊥A1E,与DA1⊥A1E矛盾,故③不正确. ‎ ‎ 17.如图,在正方体ABCD—A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.‎ ‎【解析】证明:如图,连接BD,B1D1,‎ ‎18.如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点,求异面直线BE与CD所成角的余弦值.‎ ‎【解析】如图所示,取AC的中点F,连接EF,BF,‎ ‎∵在△ACD中,E,F分别是AD,AC的中点,‎ ‎∴EF∥CD. ‎ ‎∴∠BEF或其补角即为异面直线BE与CD所成的角.‎ 在Rt△EAB中,AB=AC=1,AE=AD=,‎ ‎∴BE=.‎ 在Rt△EAF中,AF=AC=,AE=,∴EF=.‎ 在Rt△BAF中,AB=1,AF=,∴BF=.‎ 在等腰三角形EBF中,cos∠FEB===.‎ ‎∴异面直线BE与CD所成角的余弦值为.‎
查看更多

相关文章

您可能关注的文档