2020届二轮复习17直线与圆锥曲线作业
专题能力训练17 直线与圆锥曲线
专题能力训练第40页
一、能力突破训练
1.已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )
A.13 B.12 C.23 D.34
答案:A
解析:由题意,不妨设直线l的方程为y=k(x+a),k>0,分别令x=-c与x=0,得|FM|=k(a-c),|OE|=ka.
设OE的中点为G,
由△OBG∽△FBM,得12|OE||FM|=|OB||BF|,
即ka2k(a-c)=aa+c,整理,得ca=13,
故椭圆的离心率e=13,故选A.
2.已知双曲线x2a2-y2b2=1(a>0,b>0)的离心率为5,则抛物线x2=4y的焦点到双曲线的渐近线的距离是( )
A.510 B.55 C.255 D.455
答案:B
解析:抛物线x2=4y的焦点为(0,1),双曲线x2a2-y2b2=1(a>0,b>0)的离心率为5,所以ba=c2-a2a2=e2-1=2,双曲线的渐近线为y=±bax=±2x,则抛物线x2=4y的焦点到双曲线的渐近线的距离是11+4=55.故选B.
3.如果与抛物线y2=8x相切且倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为( )
A.4 B.22 C.2 D.2
答案:C
解析:设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0.因为直线与抛物线相切,所以Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-
2,0),B(0,-2).因此过A,B两点的最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2.而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2(2)2-12=2.
4.已知双曲线C:x23-y2=1,O为坐标原点,F为C的右焦点,过点F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=( )
A.32 B.3 C.23 D.4
答案:B
解析:由条件知F(2,0),渐近线方程为y=±33x,
所以∠NOF=∠MOF=30°,∠MON=60°≠90°.
不妨设∠OMN=90°,
则|MN|=3|OM|.
又|OF|=2,在Rt△OMF中,|OM|=2cos30°=3,
所以|MN|=3.
5.在平面直角坐标系xOy中,双曲线C1:x2a2-y2b2=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为 .
答案:32
解析:双曲线的渐近线方程为y=±bax.
由y=bax,x2=2py,得A2bpa,2b2pa2.
由y=-bax,x2=2py,得B-2bpa,2b2pa2.
∵F0,p2为△OAB的垂心,∴kAF·kOB=-1.
即2b2pa2-p22bpa-0·-ba=-1,解得b2a2=54,
∴c2a2=94,即可得e=32.
6.设椭圆C:x22+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
(1)解由已知得F(1,0),l的方程为x=1.
由已知可得,点A的坐标为1,22或1,-22.
所以AM的方程为y=-22x+2或y=22x-2.
(2)证明当l与x轴重合时,∠OMA=∠OMB=0°,
当l与x轴垂直时,OM为AB的垂直平分线,
所以∠OMA=∠OMB.
当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2),
则x1<2,x2<2,直线MA,MB的斜率之和为kMA+kMB=y1x1-2+y2x2-2.
由y1=kx1-k,y2=kx2-k,得
kMA+kMB=2kx1x2-3k(x1+x2)+4k(x1-2)(x2-2).
将y=k(x-1)代入x22+y2=1,得(2k2+1)x2-4k2x+2k2-2=0,
所以x1+x2=4k22k2+1,x1x2=2k2-22k2+1.
则2kx1x2-3k(x1+x2)+4k
=4k3-4k-12k3+8k3+4k2k2+1=0.
从而kMA+kMB=0,故MA,MB的倾斜角互补,
所以∠OMA=∠OMB.
综上,∠OMA=∠OMB.
7.如图,已知抛物线x2=y,点A-12,14,B32,94,抛物线上的点P(x,y)-12
b>0)的离心率为32,A(a,0),B(0,b),O(0,0),△OAB的面积为1.
(1)求椭圆C的方程;
(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN|·|BM|为定值.
(1)解由题意得ca=32,12ab=1,a2=b2+c2,解得a=2,b=1.
所以椭圆C的方程为x24+y2=1.
(2)证明由(1)知,A(2,0),B(0,1).
设P(x0,y0),则x02+4y02=4.
当x0≠0时,直线PA的方程为y=y0x0-2(x-2).
令x=0,得yM=-2y0x0-2,
从而|BM|=|1-yM|=1+2y0x0-2.
直线PB的方程为y=y0-1x0x+1.
令y=0,得xN=-x0y0-1,
从而|AN|=|2-xN|=2+x0y0-1.
所以|AN|·|BM|=2+x0y0-1·1+2y0x0-2
=x02+4y02+4x0y0-4x0-8y0+4x0y0-x0-2y0+2
=4x0y0-4x0-8y0+8x0y0-x0-2y0+2=4.
当x0=0时,y0=-1,|BM|=2,|AN|=2,
所以|AN|·|BM|=4.
综上,|AN|·|BM|为定值.
9.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
解:(1)由题意得F(1,0),l的方程为y=k(x-1)(k>0).
设A(x1,y1),B(x2,y2).
由y=k(x-1),y2=4x,得k2x2-(2k2+4)x+k2=0.
Δ=16k2+16>0,故x1+x2=2k2+4k2.
所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=4k2+4k2.由题设知4k2+4k2=8,解得k=-1(舍去),k=1.因此l的方程为y=x-1.
(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为y-2=-(x-3),即y=-x+5.
设所求圆的圆心坐标为(x0,y0),则y0=-x0+5,(x0+1)2=(y0-x0+1)22+16.
解得x0=3,y0=2或x0=11,y0=-6.
因此所求圆的方程为
(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.
二、思维提升训练
10.已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k= .
答案:2
解析:设直线AB:x=my+1,
联立x=my+1,y2=4x⇒y2-4my-4=0,
则y1+y2=4m,y1y2=-4.
而MA=(x1+1,y1-1)=(my1+2,y1-1),
MB=(x2+1,y2-1)=(my2+2,y2-1).
∵∠AMB=90°,
∴MA·MB=(my1+2)(my2+2)+(y1-1)(y2-1)
=(m2+1)y1y2+(2m-1)(y1+y2)+5
=-4(m2+1)+(2m-1)4m+5
=4m2-4m+1=0.
∴m=12.∴k=1m=2.
11.(2019北京,理18)已知抛物线C:x2=-2py经过点(2,-1).
(1)求抛物线C的方程及其准线方程.
(2)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=-1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
(1)解由抛物线C:x2=-2py经过点(2,-1),得p=2.
所以抛物线C的方程为x2=-4y,其准线方程为y=1.
(2)证明抛物线C的焦点为F(0,-1).
设直线l的方程为y=kx-1(k≠0).
由y=kx-1,x2=-4y,得x2+4kx-4=0.
设M(x1,y1),N(x2,y2),则x1x2=-4.
直线OM的方程为y=y1x1x.
令y=-1,得点A的横坐标xA=-x1y1.
同理得点B的横坐标xB=-x2y2.
设点D(0,n),则DA=-x1y1,-1-n,DB=-x2y2,-1-n,DA·DB=x1x2y1y2+(n+1)2=x1x2-x124-x224+(n+1)2=16x1x2+(n+1)2=-4+(n+1)2.
令DA·DB=0,
即-4+(n+1)2=0,得n=1或n=-3.
综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,-3).
12.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.
(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;
(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.
解:(1)因为|AD|=|AC|,EB∥AC,
故∠EBD=∠ACD=∠ADC.
所以|EB|=|ED|,
故|EA|+|EB|=|EA|+|ED|=|AD|.
又圆A的标准方程为(x+1)2+y2=16,
从而|AD|=4,
所以|EA|+|EB|=4.
由题设得A(-1,0),B(1,0),|AB|=2,
由椭圆定义可得点E的轨迹方程为x24+y23=1(y≠0).
(2)当l与x轴不垂直时,设l的方程为
y=k(x-1)(k≠0),M(x1,y1),N(x2,y2),
由y=k(x-1),x24+y23=1,
得(4k2+3)x2-8k2x+4k2-12=0,
则x1+x2=8k24k2+3,x1x2=4k2-124k2+3,
所以|MN|=1+k2|x1-x2|=12(k2+1)4k2+3.
过点B(1,0)且与l垂直的直线m:y=-1k(x-1),点A到直线m的距离为2k2+1,
所以|PQ|=242-2k2+12=44k2+3k2+1.
故四边形MPNQ的面积
S=12|MN||PQ|=121+14k2+3.
可得当l与x轴不垂直时,四边形MPNQ面积的取值范围为(12,83).
当l与x轴垂直时,其方程为x=1,|MN|=3,|PQ|=8,四边形MPNQ的面积为12.
综上,四边形MPNQ面积的取值范围为[12,83).
13.已知斜率为k的直线l与椭圆C:x24+y23=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<-12.
(2)设F为C的右焦点,P为C上一点,且FP+FA+FB=0.证明:|FA|,|FP|,|FB|成等差数列,并求该数列的公差.
(1)证明设A(x1,y1),B(x2,y2),则x124+y123=1,x224+y223=1.
两式相减,并由y1-y2x1-x2=k,得x1+x24+y1+y23·k=0.
由题设知x1+x22=1,y1+y22=m,于是k=-34m.①
由题设得0
查看更多