- 2021-06-10 发布 |
- 37.5 KB |
- 33页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2014年高考数学(理科)真题分类汇编C单元 三角函数
数 学 C单元 三角函数 C1 角的概念及任意角的三角函数 6.C1、C3[2014·新课标全国卷Ⅰ] 如图11,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为( ) 图11 A B C D 6.C [解析] 根据三角函数的定义,点M(cos x,0),△OPM的面积为|sin xcos x|,在直角三角形OPM中,根据等积关系得点M到直线OP的距离,即f(x)=|sin xcos x|=|sin 2x|,且当x=时上述关系也成立, 故函数f(x)的图像为选项C中的图像. C2 同角三角函数的基本关系式与诱导公式 16.C2、C4、C6[2014·福建卷] 已知函数f(x)=cos x(sin x+cos x)-. (1)若0<α<,且sin α=,求f(α)的值; (2)求函数f(x)的最小正周期及单调递增区间. 16.解:方法一:(1)因为0<α<,sin α=,所以cos α=. 所以f(α)=×- =. (2)因为f(x)=sin xcos x+cos2x- =sin 2x+- =sin 2x+cos 2x =sin, 所以T==π. 由2kπ-≤2x+≤2kπ+,k∈Z, 得kπ-≤x≤kπ+,k∈Z. 所以f(x)的单调递增区间为,k∈Z. 方法二:f(x)=sin xcos x+cos2x- =sin 2x+- =sin 2x+cos 2x =sin. (1)因为0<α<,sin α=,所以α=, 从而f(α)=sin=sin=. (2)T==π. 由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z. 所以f(x)的单调递增区间为,k∈Z. 17.C2,C3,C4[2014·重庆卷] 已知函数f(x)=sin(ωx+φ)的图像关于直线x=对称,且图像上相邻两个最高点的距离为π. (1)求ω和φ的值; (2)若f=,求cos的值. 17.解:(1)因为f(x)的图像上相邻两个最高点的距离为π,所以ƒ(x)的最小正周期T=π,从而ω==2. 又因为f(x)的图像关于直线x=对称, 所以2×+φ=kπ+,k=0,±1,±2,…. 因为-≤φ<, 所以φ=-. (2)由(1)得ƒ=sin(2×-)=, 所以sin=. 由<α<得0<α-<, 所以cos===. 因此cos =sin α =sin =sincos+cossin =×+× =. C3 三角函数的图象与性质 9.C3[2014·辽宁卷] 将函数y=3sin的图像向右平移个单位长度,所得图像对应的函数( ) A.在区间上单调递减 B.在区间上单调递增 C.在区间上单调递减 D.在区间上单调递增 9.B [解析] 由题可知,将函数y=3sin的图像向右平移个单位长度得到函数y=3sin的图像,令-+2kπ≤2x-π≤+2kπ,k∈Z,即+kπ≤x≤+kπ,k∈Z时,函数单调递增,即函数y=3sin的单调递增区间为,k∈Z,可知当k=0时,函数在区间上单调递增. 3.C3[2014·全国卷] 设a=sin 33°,b=cos 55°,c=tan 35°,则( ) A.a>b>c B.b>c>a C.c>b>a D.c>a>b 3.C [解析] 因为b=cos 55°=sin 35°>sin 33°,所以b>a.因为cos 35°<1,所以 >1,所以>sin 35°.又c=tan 35°=>sin 35°,所以c>b,所以c>b>a. 6.C1、C3[2014·新课标全国卷Ⅰ] 如图11,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图像大致为( ) 图11 A B C D 6.C [解析] 根据三角函数的定义,点M(cos x,0),△OPM的面积为|sin xcos x|,在直角三角形OPM中,根据等积关系得点M到直线OP的距离,即f(x)=|sin xcos x|=|sin 2x|,且当x=时上述关系也成立, 故函数f(x)的图像为选项C中的图像. 14.C3、C5[2014·新课标全国卷Ⅱ] 函数f(x)=sin(x+2φ)-2sin φcos(x+φ)的最大值为________. 14.1 [解析] 函数f(x)=sin(x+2φ)-2sin φcos(x+φ)=sin[(x+φ)+φ]-2sin φcos(x+φ)=sin(x+φ)cos φ-cos(x+φ)sin φ=sin x,故其最大值为1. 17.C2,C3,C4[2014·重庆卷] 已知函数f(x)=sin(ωx+φ)的图像关于直线x=对称,且图像上相邻两个最高点的距离为π. (1)求ω和φ的值; (2)若f=,求cos的值. 17.解:(1)因为f(x)的图像上相邻两个最高点的距离为π,所以ƒ(x)的最小正周期T=π,从而ω==2. 又因为f(x)的图像关于直线x=对称, 所以2×+φ=kπ+,k=0,±1,±2,…. 因为-≤φ<, 所以φ=-. (2)由(1)得ƒ=sin(2×-)=, 所以sin=. 由<α<得0<α-<, 所以cos===. 因此cos =sin α =sin =sincos+cossin =×+× =. C4 函数的图象与性质 3.C4[2014·四川卷] 为了得到函数y=sin (2x+1)的图像,只需把函数y=sin 2x的图像上所有的点( ) A.向左平行移动个单位长度 B.向右平行移动个单位长度 C.向左平行移动1个单位长度 D.向右平行移动1个单位长度 3.A [解析] 因为y=sin(2x+1)=sin2,所以为得到函数y=sin(2x+1)的图像,只需要将y=sin 2x的图像向左平行移动个单位长度. 11.C4[2014·安徽卷] 若将函数f(x)=sin的图像向右平移φ个单位,所得图像关于y轴对称,则φ的最小正值是________. 11. [解析] 方法一:将f(x)=sin的图像向右平移φ个单位,得到y=sin的图像,由该函数的图像关于y轴对称,可知sin=±1,即sin=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,所以当φ>0时,φmin=. 方法二:由f(x)=sin的图像向右平移φ个单位后所得的图像关于y轴对称可知,-2φ=+kπ,k∈Z,又φ>0,所以φmin=. 14.C4[2014·北京卷] 设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间上具有单调性,且f=f=-f,则f(x)的最小正周期为________. 14.π [解析] 结合图像得=-,即T=π. 16.C2、C4、C6[2014·福建卷] 已知函数f(x)=cos x(sin x+cos x)-. (1)若0<α<,且sin α=,求f(α)的值; (2)求函数f(x)的最小正周期及单调递增区间. 16.解:方法一:(1)因为0<α<,sin α=,所以cos α=. 所以f(α)=×- =. (2)因为f(x)=sin xcos x+cos2x- =sin 2x+- =sin 2x+cos 2x =sin, 所以T==π. 由2kπ-≤2x+≤2kπ+,k∈Z, 得kπ-≤x≤kπ+,k∈Z. 所以f(x)的单调递增区间为,k∈Z. 方法二:f(x)=sin xcos x+cos2x- =sin 2x+- =sin 2x+cos 2x =sin. (1)因为0<α<,sin α=,所以α=, 从而f(α)=sin=sin=. (2)T==π. 由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z. 所以f(x)的单调递增区间为,k∈Z. 7.C4、C5[2014·广东卷] 若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( ) A.l1⊥l4 B.l1∥l4 C.l1与l4既不垂直也不平行 D.l1与l4的位置关系不确定 7.D [解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可. 如图所示,在正方体ABCD A1B1C1D1中,设BB1是直线l1,BC是直线l2,AB是直线l3,则DD1是直线l4,l1∥l4;设BB1是直线l1,BC是直线l2,CC1是直线l3,CD是直线l4,则l1⊥l4.故l1与l4的位置关系不确定. 17.C4、C5、C7、C9[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-cost-sint,t∈[0,24). (1)求实验室这一天的最大温差. (2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 17.解:(1)因为f(t)=10-2=10-2sin, 又0≤t<24,所以≤t+<,-1≤sin≤1. 当t=2时,sin=1; 当t=14时,sin=-1. 于是f(t)在[0,24)上取得的最大值是12,最小值是8. 故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f(t)>11时,实验室需要降温. 由(1)得f(t)=10-2sin, 故有10-2sin>11, 即sin<-. 又0≤t<24,因此查看更多
相关文章
- 当前文档收益归属上传用户