- 2021-06-10 发布 |
- 37.5 KB |
- 15页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学复习 17-18版 第10章 第54课 随机事件的概率
第54课 随机事件的概率 [最新考纲] 内容 要求 A B C 随机事件与概率 √ 互斥事件及其发生的概率 √ 1.概率和频率 (1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率. (2)对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A). 2.事件的关系与运算 定义 符号表示 包含关系 若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B) B⊇A(或A⊆B) 相等关系 若B⊇A,且A⊇B,那么称事件A与事件B相等 A=B并事件 (和事件) 若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件) A∪B(或A+B) 交事件 (积事件) 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) A∩B(或AB) 互斥事件 若A∩B为不可能事件,那么称事件A与事件B互斥 A∩B=∅ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 A∩B=∅ 且A∪B=Ω 3.概率的几个基本性质 (1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)互斥事件概率的加法公式. ①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B); ②若事件B与事件A互为对立事件,则P(A)=1-P(B). 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)事件发生的频率与概率是相同的.( ) (2)在大量的重复实验中,概率是频率的稳定值.( ) (3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( ) (4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率. [答案] (1)× (2)√ (3)√ (4)× 2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为________. ② [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.] 3.(2016·天津高考改编)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________. [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.] 4.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是________. [从A,B中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况, 其中和为4的有两种情况(2,2),(3,1), 故所求事件的概率P==.] 5.(2017·威海模拟)围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是,则从中任意取出2粒恰好是同一色的概率是________. [由题意知,所求概率P=+=.] 随机事件间的关系 从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是________.(填序号) ③ [从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数, 其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件. 又①②④中的事件可以同时发生,不是对立事件.] [规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系. 2.准确把握互斥事件与对立事件的概念. (1)互斥事件是不可能同时发生的事件,但可以同时不发生. (2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生. [变式训练1] 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________. 【导学号:62172298】 ①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C+E)=1;⑤P(B)=P(C). ①④ [当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C+E为必然事件,④正确.由于P(B)=,P(C)=,所以⑤不正确.] 随机事件的频率与概率 (2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5 保 费 0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 0 1 2 3 4 ≥5 频数 60 50 30 30 20 10 (1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值; (2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值; (3)求续保人本年度平均保费的估计值. [解] (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55. (2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3. (3)由所给数据得 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率 0.30 0.25 0.15 0.15 0.10 0.05 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a. 因此,续保人本年度平均保费的估计值为1.192 5a. [规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率. 2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值. [变式训练2] (2017·西安质检)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下: 日期 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 日期 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨 (1)在4月份任选一天,估计西安市在该天不下雨的概率; (2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率. [解] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26, 以频率估计概率,在4月份任选一天,西安市不下雨的概率为=. (2)称相邻的两个日期为“互邻日期对” (如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f==. 以频率估计概率,运动会期间不下雨的概率为. 互斥事件与对立事件的概率 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量 1至4件 5至8件 9至12件 13至16件 17件及 以上 顾客数(人) x 30 25 y 10 结算时间 (分钟/人) 1 1.5 2 2.5 3 已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x,y的值,并估计顾客一次购物的结算时间的平均值; (2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率). 【导学号:62172299】 [解] (1)由题意,得 解得 该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计. 又==1.9, ∴估计顾客一次购物的结算时间的平均值为1.9分钟. (2)设B,C分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.” 将频率视为概率,得P(B)==, P(C)==. ∵B,C互斥,且=B+C, ∴P()=P(B+C)=P(B)+P(C)=+=, 因此P(A)=1-P()=1-=, ∴一位顾客一次购物结算时间不超过2分钟的概率为0.7. [规律方法] 1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来. (2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误. 2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题,多考虑间接法. [变式训练3] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求: (1)P(A),P(B),P(C); (2)1张奖券的中奖概率; (3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P(A)=, P(B)==, P(C)==. 故事件A,B,C的概率分别为,,. (2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A+B+C. ∵A,B,C两两互斥, ∴P(M)=P(A+B+C)=P(A)+P(B)+P(C) ==, 故1张奖券的中奖概率约为. (3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件, ∴P(N)=1-P(A+B)=1-=, 故1张奖券不中特等奖且不中一等奖的概率为. [思想与方法] 1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A). 2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生. 3.求复杂的互斥事件的概率一般有两种方法: (1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算. (2)间接法:先求此事件的对立事件的概率,再用公式P(A)=1-P(),即运用逆向思维(正难则反). [易错与防范] 1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数. 2.正确认识互斥事件与对立事件的关系:对立事件是特殊的互斥事件,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件. 3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义. 课时分层训练(五十四) A组 基础达标 (建议用时:30分钟) 一、填空题 1.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是________事件. 互斥 [由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件.] 2.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________. 0.35 [∵事件A={抽到一等品},且P(A)=0.65, ∴事件“抽到的产品不是一等品”的概率为P=1-P(A)=1-0.65=0.35.] 3.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;② 做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;③随机事件发生的频率就是这个随机事件发生的概率. 0 [①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念.] 4.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果. 经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 【导学号:62172300】 [20组随机数中,恰有两次命中的有5组,因此该运动员三次投篮恰有两次命中的概率为P==.] 5.(2017·云南昆明3月月考)中国乒乓球队中的甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为,乙夺得冠军的概率为,那么中国队夺得女子乒乓球单打冠军的概率为________. [由于事件“中国队夺得女子乒乓球单打冠军”包括事件“甲夺得冠军”和“乙夺得冠军”,但这两个事件不可能同时发生,即彼此互斥,所以可按互斥事件概率的加法公式进行计算,即中国队夺得女子乒乓球单打冠军的概率为+=.] 6.某袋中有编号为1,2,3,4,5,6的6个球(小球除编号外完全相同),甲先从袋中摸出一个球,记下编号后放回,乙再从袋中摸出一个球,记下编号,则甲、乙两人所摸出球的编号不同的概率是________. [设a,b分别为甲、乙摸出球的编号.由题意,摸球试验共有n=6×6=36种不同结果,满足a=b的基本事件共有6种, 所以摸出编号不同的概率P=1-=.] 7.如图541所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是________. 【导学号:62172301】 图541 [设被污损的数字为x,则 甲=(88+89+90+91+92)=90, 乙=(83+83+87+99+90+x), 若甲=乙,则x=8. 若甲>乙,则x可以为0,1,2,3,4,5,6,7, 故P==.] 8.抛掷一枚均匀的正方体骰子(各面分别标有数字1,2,3,4,5,6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过2”,则P(A+B)=________. [将事件A+B分为:事件C“朝上一面的数为1,2”与事件D“朝上一面的数为3,5”. 则C,D互斥, 且P(C)=,P(D)=, ∴P(A+B)=P(C+D)=P(C)+P(D)=.] 9.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是________. ①A+B与C是互斥事件,也是对立事件; ②B+C与D是互斥事件,也是对立事件; ③A+C与B+D是互斥事件,但不是对立事件; ④A与B+C+D是互斥事件,也是对立事件. ④ [由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,④正确.] 10.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是________. [由题意可知 解得查看更多
相关文章
- 当前文档收益归属上传用户