北京市朝阳区2020届高三上学期期末考试物理试题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

北京市朝阳区2020届高三上学期期末考试物理试题

北京市朝阳区2019—2020学年度第一学期期末质量检测 高三年级物理试卷 ‎(考试时间90分钟 满分100分)‎ 一、本题共14小题,每小题3分,共42分。在每小题列出的四个选项中,只有一个选项符合题目要求。‎ ‎1.以下与“1V”相等的是 A. 1N·m/C B. 1J/s C. 1T·m/s2 D. 1Wb/C ‎【答案】A ‎【解析】‎ ‎【详解】A.1N·m/C=1J/C=1V,选项A正确; ‎ B.1J/s=1W,选项B错误; ‎ C.,选项 C错误; ‎ D.,选项D错误;‎ 故选A.‎ ‎2.如图所示,设想在真空环境中将带电导体球靠近不带电的导体。若沿虚线1将导体分成左右两部分,这两部分所带电荷量分别为Q左、Q右;若沿虚线2将导体分成左右两部分,这两部分所带电荷量分别为Q'左、Q'右。下列推断正确的是 A. Q左+Q右可能为负 B. Q左+Q右一定等于Q'左+Q'右 C. 导体内虚线1上各点的场强小于虚线2上各点的场强 D. 导体内虚线1上各点的电势小于虚线2上各点的电势 ‎【答案】B ‎【解析】‎ ‎【详解】A. 因导体所带电量的总和为零,则Q左+Q右一定为零,选项A错误;‎ B. 因导体所带电量的总和为零,则Q左+Q右一定等于Q'左+Q'右且都等于零,选项B正确;‎ C. 达到静电平衡时,导体内部各处场强均为零,则导体内虚线1上各点的场强等于虚线2上各点的场强,选项C错误;‎ D. 达到静电平衡时,导体是等势体,则导体内虚线1上各点的电势等于虚线2上各点的电势,选项D错误;‎ 故选B.‎ ‎3.四种电场的电场线分布情况如图所示。将一检验电荷分别放在场中a、b两点,则该检验电荷在a、b两点所受的电场力以及电势能均相同的是 ‎ ‎ A. 甲图中,与正点电荷等距离的a、b两点 B. 乙图中,两等量异种点电荷连线中垂线上与连线等距的a、b两点 C. 丙图中,两等量同种点电荷连线中垂线上与连线等距的a、b两点 D. 丁图中,某非匀强电场中同一条电场线上的a、b两点 ‎【答案】B ‎【解析】‎ ‎【详解】A.甲图中,与正点电荷等距离的a、b两点场强大小相等,但是方向不同,则该检验电荷在a、b两点所受的电场力不相同;因两点的电势相等,则电荷在两点的电势能相同,选项A错误;‎ B.乙图中,两等量异种点电荷连线中垂线上与连线等距的a、b两点,由对称可知,两点的场强大小和方向均相同,则检验电荷所受的电场力相同;因a、b所在的直线是等势面,则电荷在两点的电势能相同,选项B正确;‎ C.丙图中,两等量同种点电荷连线中垂线上与连线等距的a、b两点的场强大小相同,但是方向不同,则该检验电荷在a、b两点所受的电场力不相同;因两点的电势相等,则电荷在两点的电势能相同,选项C错误;‎ D.丁图中,某非匀强电场中同一条电场线上的a、b 两点的场强和电势均不同,则该检验电荷在a、b两点所受的电场力不相同,电荷在两点的电势能也不相同,选项D错误;‎ 故选B.‎ ‎4.小明同学探究楞次定律的实验装置如图所示。下列说法正确的是 A. 若线圈导线的绕向未知,对探究楞次定律没有影响 B. 磁铁匀速向上远离线圈,闭合回路中不会产生感应电流 C. 感应电流的磁场总是阻碍引起感应电流的磁通量的变化 D. 感应电流的磁场方向总是与引起感应电流的磁场方向相反 ‎【答案】C ‎【解析】‎ ‎【详解】A.若线圈导线的绕向未知,则不能确定电流的方向,也不能确定感应电流的磁场方向,则不能探究楞次定律,选项A错误;‎ B.磁铁匀速向上远离线圈,线圈中磁通量会减小,则闭合回路中会产生感应电流,选项B错误;‎ C.根据楞次定律可知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,选项C正确;‎ D.根据楞次定律可知,感应电流的磁场方向与引起感应电流的磁场方向可能相同,也可能相反,选项D错误;‎ 故选C.‎ ‎5.磁流体发电机的结构简图如图所示。把平行金属板A、B和电阻R连接, A、B之间有很强的磁场,将一束等离子体(即高温下电离的气体,含有大量正、负带电粒子)以速度v喷入磁场,A、B两板间便产生电压,成为电源的两个电极。下列推断正确的是 A. A板为电源的正极 B. A、B两板间电压等于电源的电动势 C. 两板间非静电力对等离子体做功,使电路获得电能 D. 若增加两极板的正对面积,则电源的电动势会增加 ‎【答案】C ‎【解析】‎ ‎【详解】A.由左手定则可知,正离子向B板偏转,则B板为电源的正极,选项A错误;‎ B.A、B两板间电压相当于电源的路端电压,则小于电源的电动势,选项B错误;‎ C.两板间洛伦兹力,即非静电力对等离子体做功,使电路获得电能,选项C正确;‎ D.平衡时,则E=Bdv,则若增加两极板的正对面积,则电源的电动势不变,选项D错误;‎ 故选C.‎ ‎6.如图所示,平行板电容器极板与水平面成θ 角放置,充电后与电源断开。有一质量为m、电荷量为q的小球,从极板左侧沿水平方向飞入电场并沿直线飞出。下列推断正确的是 A. 小球做匀速直线运动 B. 仅使小球的电荷量加倍,小球依然做直线运动 C. 仅使板间距加倍,小球依然做直线运动 D. 仅使电容器转至水平,小球依然做直线运动 ‎【答案】C ‎【解析】‎ ‎【详解】A.小球做直线运动,则所受的合力沿水平方向,合力大小为F=mgtanθ恒定,可知小球做匀加速直线运动,选项A错误;‎ B.仅使小球的电荷量加倍,则电场力变大,合力的方向不再水平,则速度与合力方向不再共线,则小球做曲线运动,选项B错误;‎ C.仅使板间距加倍,根据 、 、 联立可得 因电容器带电量不变,则两板场强不变,小球依然做直线运动,选项C正确;‎ D.仅使电容器转至水平,则电场力与重力共线,但是电场力大于重力,则合力向上,则小球不能做直线运动,选项D错误;‎ 故选C.‎ ‎7.A、B是两个完全相同的电热器,A、B分别通以图甲、乙所示的交变电流。则 ‎ ‎ A. 通过A、B两电热器的电流有效值之比为IA∶IB =3∶4‎ B. 通过A、B两电热器的电流有效值之比为IA∶IB =‎ C. A、B两电热器的电功率之比为 PA∶PB =3∶2‎ D. A、B两电热器的电功率之比为 PA∶PB =5∶4‎ ‎【答案】D ‎【解析】‎ ‎【详解】AB.对甲:‎ 解得 对乙:‎ 则 IA∶IB =‎ 选项AB错误;‎ CD.根据P=I2R可知A、B两电热器的电功率之比为 PA∶PB =5∶4,选项C错误,D正确;‎ 故选D.‎ ‎8.在光滑水平面上,细绳的一端拴一带正电的小球,小球绕细绳的另一端O沿顺时针做匀速圆周运动,水平面处于竖直向下的足够大的匀强磁场中,如图所示(俯视)。某时刻细绳突然断裂,则下列推断正确的是 A. 小球将离圆心O越来越远,且速率越来越小 B. 小球将离圆心O越来越远,且速率保持不变 C. 小球将做匀速圆周运动,运动周期与绳断前的周期一定相等 D. 小球将做匀速圆周运动,运动半径与绳断前的半径可能相等 ‎【答案】D ‎【解析】‎ ‎【详解】AB.由左手定则可知,小球受洛伦兹力背离圆心向外,当细绳断裂后,则小球将在洛伦兹力作用下绕逆时针方向做匀速圆周运动,则选项AB错误;‎ CD.剪断细线前:,因剪断细线后速度不变;若满足 ‎,则剪断细线后做圆周运动的半径与原来相同;若,则剪断细线后做圆周运动的半径与原来不相同,则由可知周期不相同,选项C错误,D正确;‎ 故选D.‎ ‎9.大型发电机几乎都是旋转磁极式发电机,下图为其原理简图。竖直平面内闭合线圈abcd固定不动,磁铁绕图中的虚线旋转,线圈中就会产生感应电流。若条形磁铁以10π rad/s的角速度匀速转动,且图示时刻N极正在向里转。现以图示时刻为计时起点,则下列推断正确的是 A. 该发电机产生的交流电频率是10Hz B. t=0时线圈中的电流方向为abcda C. t=0.5s时线圈中的电流方向发生变化 D. t=5s时线圈中的电流最小 ‎【答案】B ‎【解析】‎ ‎【详解】A.该发电机产生交流电频率是,选项A错误;‎ B.由右手定则可知,t=0时线圈中的电流方向为abcda,选项B正确;‎ C.t=0.5s时线圈转过的角度为5π,此位置电流仍然是最大的位置,则线圈中的电流方向没有发生变化,选项C错误;‎ D.t=5s时线圈转过的角度为50π,线圈回到初始位置,则此位置线圈中的电流最大,选项D错误;‎ 故选B.‎ ‎10.汽车蓄电池供电的简化电路如图所示。当汽车启动时,开关S闭合,启动系统的电动机工作,车灯亮度会有明显变化;当汽车启动之后,开关S断开,启动系统的电动机停止工作,车灯亮度恢复正常。则汽车启动时 A. 电源的效率减小 B. 车灯一定变亮 C. 电动机的输出功率等于电源输出功率减去两灯的功率 D. 若灯L1不亮灯L2亮,可能是由于L1灯短路所致 ‎【答案】A ‎【解析】‎ ‎【详解】A.汽车启动时,电键S闭合时,电路中总电流变大,等效于外电阻减小,根据 可知,电源的效率减小,选项A正确;‎ B.汽车启动时,电路中总电流变大,则电源内阻上的电压变大,则路端电压减小,则车灯一定变暗,选项B错误;‎ C.由能量关系可知,电动机的输入功率等于电源输出功率减去两灯的功率,选项C错误;‎ D.若L1灯短路,则L2灯也会不亮,选项D错误;‎ 故选A ‎11.利用电场可以使带电粒子运动方向发生改变。现使一群电荷量相同、质量不同的带电粒子同时沿同一方向垂直射入同一匀强电场,经相同时间速度的偏转角相同,不计粒子重力及粒子间的相互作用,则它们在进入电场时一定具有相同的 A. 动能 B. 动量 C. 加速度 D. 速度 ‎【答案】B ‎【解析】‎ ‎【详解】速度的偏转角,若偏转角相同,则mv0相同;‎ A.动能,与结论不相符,选项A错误;‎ B.动量,与结论相符,选项B正确;‎ C.加速度,与结论不相符,选项C错误;‎ D.速度,与结论不相符,选项D错误;‎ 故选B.‎ ‎12.有些仪器在使用时对电流非常敏感,需要对电流做精细的调节,常用两个阻值不同的变阻器来完成调节,一个做粗调另一个做微调。有两种电路如图甲、乙所示,分别将R1和R2两个变阻器按不同连接方式接入电路,R1的最大阻值较大,R2的最大阻值较小。则 A. 图甲和图乙所示的电路都用R1做粗调 B. 图甲和图乙所示的电路都用R2做粗调 C. 图甲所示的电路用R1做粗调,图乙所示的电路用R2做粗调 D. 图甲所示的电路用R2做粗调,图乙所示的电路用R1做粗调 ‎【答案】C ‎【解析】‎ ‎【详解】甲图中,两个电阻串联,根据欧姆定律,调节R1时,电阻变化大,故电流改变大,是粗调。乙图中,两个电阻并联,电阻小的电流大,调节电阻R2是粗调。 A.图甲和图乙所示的电路都用R1做粗调,与结论不相符,选项A错误;‎ B.图甲和图乙所示的电路都用R2做粗调,与结论不相符,选项B错误;‎ C.图甲所示的电路用R1做粗调,图乙所示的电路用R2做粗调,与结论相符,选项C正确;‎ D.图甲所示的电路用R2做粗调,图乙所示的电路用R1做粗调,与结论不相符,选项D错误;‎ 故选C。‎ ‎13.小红将量程为0~‎0.6A的电流表(表盘刻度共有30个小格),按照图示电路改装成较大量程的安培表,其中R1和R2阻值相等,都等于改装前电流表内阻的。则 A. 将1、2接入电路时,安培表每一小格表示‎0.12A B. 将1、2接入电路时,安培表每一小格表示‎0.08A C. 将1、3接入电路时,安培表每一小格表示‎0.12A D. 将1、3接入电路时,安培表每一小格表示‎0.08A ‎【答案】A ‎【解析】‎ ‎【详解】设R1=R2=R,则电流表内阻为4R;‎ AB.将1、2接入电路时,若电流表满偏‎0.6A,则R1电流为‎3A,则量程为‎3.6A,则安培表每一小格表示‎3.6A/30=‎0.12A,选项A正确,B错误;‎ CD.将1、3接入电路时,若电流表满偏‎0.6A,则R1 和R1电流均为‎1.2A,则量程为‎1.8A,则安培表每一小格表示‎1.8A/30=‎0.06A,选项CD错误;‎ 故选A.‎ ‎14.物理课上老师做了这样一个实验,将一平整且厚度均匀的铜板固定在绝缘支架上,将一质量为m的永磁体放置在铜板的上端,t=0时刻给永磁体一沿斜面向下的瞬时冲量,永磁体将沿斜面向下运动,如图甲所示。若永磁体下滑过程中所受的摩擦力f大小不变,且(式中θ为铜板与水平面的夹角)。取地面为重力势能的零势面。则图乙中关于永磁体下滑过程中速率v、动能Ek、重力势能Ep、机械能E随时间t变化的图像一定错误的是 A. ‎ B. ‎ C. ‎ D. ‎ ‎【答案】C ‎【解析】‎ ‎【详解】A.小磁铁下滑时由于涡流的产生会有阻尼作用,且随速度的增大而增大,所受的摩擦阻力不变,且由 可知,随着小磁铁的加速下滑,阻尼作用增大,则加速度逐渐减小,v-t线的斜率减小,选项A正确,不符合题意;‎ B.若开始下落时小磁铁满足,则小磁铁匀速下滑,此时动能不变,选项B正确,不符合题意;‎ C.小磁铁下滑时重力势能逐渐减小,但是不会趋近与某一定值,选项C错误,符合题意;‎ D.小磁铁下滑过程中,由于有电能产生,则机械能逐渐减小,选项D正确;不符合题意;故选C.‎ 二、本题共2小题,共18分。把答案填在答题纸相应的位置。‎ ‎15.在“测定金属的电阻率”的实验中,所用测量仪器均已校准。‎ ‎(1)用刻度尺和螺旋测微器分别测量金属丝的长度和直径,某次测量结果如图所示,在此次测量中该金属丝的长度为___________cm,直径为___________mm。‎ ‎(2)已知待测金属丝的电阻值Rx约为5Ω。可供选择的器材有:‎ 电源E:电动势3V,内阻约1Ω 电流表A1:量程0~‎0.6A,内阻约0.125Ω 电流表A2:量程0~‎3A,内阻约0.025Ω 电压表V1:量程0~3V,内阻约3kΩ 电压表V2:量程0~15V,内阻约15kΩ 滑动变阻器R1:最大阻值5Ω,允许最大电流‎2A 滑动变阻器R2:最大阻值1000Ω,允许最大电流‎0.6A 开关一个,导线若干。‎ 在上述器材中,应该选用的电流表是______,应该选用的电压表是______。若想尽量多测几组数据,应该选用的滑动变阻器是______(填写仪器的字母代号)。‎ ‎(3)用所选的器材,在答题纸对应的方框中画出电路图__________。‎ ‎(4)关于本实验的误差,下列说法正确的是________。‎ A.对金属丝的直径多次测量求平均值,可消除误差 B.由于电流表和电压表内阻引起的误差属于偶然误差 C.利用电流I随电压U的变化图线求Rx可减小偶然误差 ‎【答案】 (1). 49.40(49.37~49.41) (2). 0.385 (0.383~0.387) (3). A1 (4). V1 (5). R1 (6). (7). C ‎【解析】‎ ‎【详解】(1)[1][2].金属丝的长度为‎49.40cm,直径为‎0.01mm×38.4=‎0.384mm。‎ ‎(2)[3][4][5].电路中可能出现的最大电流,则应该选用的电流表是A1,应该选用的电压表是V1。若想尽量多测几组数据,滑动变阻器要接成分压式,应该选用的滑动变阻器是R1;‎ ‎(3)[6].电压表的内阻远大于待测电阻阻值,则采用电流表外接;滑动变阻器用分压电路,如图;‎ ‎(4)[7].A.对金属丝的直径多次测量求平均值,可减小误差,但是不能消除误差,选项A错误;‎ B.由于电流表和电压表内阻引起的误差属于系统误差,选项B错误;‎ C.利用电流I随电压U的变化图线求Rx可减小偶然误差,选项C正确;‎ 故选C.‎ ‎16.某班物理实验课上,同学们用可拆变压器探究“变压器的电压与匝数的关系”。可拆变压器如图甲、乙所示.‎ ‎(1)下列说法正确的是_______。‎ A.为确保实验安全,实验中要求原线圈匝数小于副线圈匝数 B.变压器的原线圈接低压交流电,测量副线圈电压时应当用多用电表的“直流电压挡”‎ C.可以先保持原线圈电压、匝数不变,改变副线圈的匝数,研究副线圈匝数对副线圈电压的影响 ‎ D.测量副线圈电压时,先用最大量程试测,大致确定电压后再选用适当的挡位进行测量 E.变压器开始正常工作后,铁芯导电,把电能由原线圈输送到副线圈 F.变压器开始正常工作后,若不计各种损耗,在原线圈上将电能转化成磁场能,在副线圈上将磁场能转化成电能,铁芯起到“传递”磁场能的作用 ‎(2)如图丙所示,某同学自己绕制了两个线圈套在可拆变压器的铁芯上。原线圈接学生电源的交流输出端,副线圈接小灯泡。下列说法正确的是___________。‎ A.与变压器未通电时相比较,此时若将可拆变压器上端的横条铁芯取下将更费力 B.若仅增加原线圈绕制的圈数,小灯泡的亮度将保持不变 C.若仅增加副线圈绕制的圈数,学生电源的过载指示灯可能会亮起 ‎(3)理想变压器是一种理想化模型。请分析说明该模型应忽略哪些次要因素________‎ ‎;并证明:理想变压器原、副线圈的电压之比,等于两个线圈的匝数之比,即.‎ ‎【答案】 (1). CDF (2). AC (3). 见解析 ‎【解析】‎ ‎【详解】(1)[1].A.为确保实验安全,实验中要求原线圈匝数大于副线圈匝数,使得次级电压较小,选项A错误;‎ B.变压器的原线圈接低压交流电,测量副线圈电压时应当用多用电表的“交流电压挡”,选项B错误;‎ C.可以先保持原线圈电压、匝数不变,改变副线圈的匝数,研究副线圈匝数对副线圈电压的影响 ,选项C正确;‎ D.测量副线圈电压时,先用最大量程试测,大致确定电压后再选用适当的挡位进行测量,防止烧坏电表,选项D正确;‎ E.变压器开始正常工作后,通过电磁感应,把电能由原线圈输送到副线圈,选项E错误;‎ F.变压器开始正常工作后,若不计各种损耗,在原线圈上将电能转化成磁场能,在副线圈上将磁场能转化成电能,铁芯起到“传递”磁场能的作用,选项F正确;‎ 故选CDF.‎ ‎(2)[2].A.变压器线圈通电后会产生磁场,从而对变压器上端的横条铁芯有吸引作用,则与变压器未通电时相比较,此时若将可拆变压器上端的横条铁芯取下将更费力,选项A正确;‎ B.若仅增加原线圈绕制的圈数,则次级电压减小,小灯泡的亮度将变暗,选项B错误;‎ C.若仅增加副线圈绕制的圈数,则次级电压变大,学生电源的过载指示灯可能会亮起,选项C正确;‎ 故选AC.‎ ‎(3)[3].理想变压器模型应忽略的次要因素如下:‎ ‎①不计漏磁,即通过原副线圈每匝线圈的磁通量都相等,因而不计磁场能损失;‎ ‎②不计原副线圈的电阻,因而不计线圈的热能损失;‎ ‎③不计铁芯中产生的涡流,因而不计铁芯的热能损失。‎ 综上,理想变压器在传输能量时没有能量损失。‎ 根据法拉第电磁感应定律,原、副线圈产生的感应电动势分别为 因理想变压器不计原、副线圈的电阻,则线圈两端的电压等于它产生的感应电动势,即 联立以上各式可得 ‎ 三、本题共4小题,共40分。解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不得分,有数值计算的题,答案中必须写出数值和单位。将解答过程写在答题纸相应的位置。‎ ‎17.质谱仪是分析同位素的重要工具,其原理简图如图所示。容器A 中有电荷量均为+q、质量不同的两种粒子,它们从小孔S1不断飘入电压为U 的加速电场(不计粒子的初速度),并沿直线从小孔S2(S1与S2连线与磁场边界垂直)进入磁感应强度大小为B 、方向垂直纸面向外的匀强磁场,最后打在照相底片D上,形成a、b两条“质谱线”。已知打在a处粒子的质量为m。不计粒子重力及粒子间的相互作用。‎ ‎(1)求打在a处的粒子刚进入磁场时的速率v;‎ ‎(2)求S2距a 处的距离xa;‎ ‎(3)若S2距b处的距离为xb,且xb=,求打在b处粒子的质量mb(用m表示)。‎ ‎【答案】(1) (2) (3) mb=‎‎2m ‎【解析】‎ ‎【详解】(1)粒子经过电压为U的电场,由动能定理有 ‎ ‎ ①‎ 可得 ‎(2)粒子通过孔S2进入匀强磁场B做匀速圆周运动,有 ‎ ‎ ②‎ ‎ ③ ‎ 联立①②③式可得 ‎ ④ ‎ ‎(3)同(2)可得 ‎ ⑤‎ 联立④⑤式并代入已知条件可得 ‎ mb=‎‎2m ‎18.如图所示,在水平向右的匀强电场中,一根不可伸长的细线一端固定于O点,另一端悬挂一质量为m的带正电的小球。现将小球向右拉至与悬点O等高的A点,由静止释放。小球向左最远能摆到与竖直方向夹角为θ的B点。已知小球所带的电荷量为q0,细线的长度为L。‎ ‎(1)求小球从A点摆到B点的过程中重力所做的功W;‎ ‎(2)求A、B两点的电势差UAB及场强的大小E;‎ ‎(3)电势差的定义方式有两种:‎ 第一种是指电场中两点间电势的差值,即,式中φC和φD分别为电场中C、D两点的电势;‎ 第二种是利用比值法定义,即,式中q为检验电荷的电荷量,WCD为检验电荷在电场中从C点移动到D点过程中电场力所做的功。请你证明这两种定义方式的统一性。‎ ‎【答案】(1) (2), (3)见解析 ‎【解析】‎ ‎【详解】(1)小球从A到B的过程中下降的高度为 重力对小球做的功 可得 ‎ ‎ ‎ ‎(2)小球从A到B的过程中,由动能定理有 解得 ‎ 根据匀强电场有 ‎ 解得 ‎ ‎ ‎(3)设试探电荷在C点的电势能为,在D点的电势能为,则试探电荷从C运动到D的过程中,根据电场力做功与电势能变化的关系有 ‎ ①‎ 根据电势的定义式有 ‎ ②‎ ‎ ③‎ 联立①②③式可得 ‎ 即 ‎ 所以 可见两种定义方式是统一性。‎ ‎19.某研学小组设计了一个辅助列车进站时快速刹车方案。如图所示,在站台轨道下方埋一励磁线圈,通电后形成竖直方向的磁场(可视为匀强磁场)。在车身下方固定一矩形线框,利用线框进入磁场时所受的安培力,辅助列车快速刹车。‎ 已知列车的总质量为m,车身长为s,线框的短边ab和cd分别安装在车头和车尾,长度均为L(L小于匀强磁场的宽度),整个线框的电阻为R。站台轨道上匀强磁场区域足够长(大于车长s),车头进入磁场瞬间的速度为v0,假设列车停止前所受铁轨及空气阻力的合力恒为f。已知磁感应强度的大小为B,车尾进入磁场瞬间,列车恰好停止。‎ ‎(1)求列车车头刚进入磁场瞬间线框中的电流大小I和列车的加速度大小a;‎ ‎(2)求列车从车头进入磁场到停止所用的时间t;‎ ‎(3)请你评价该设计方案的优点和缺点。(优、缺点至少一种)。‎ ‎【答案】(1), (2) (3)见解析 ‎【解析】‎ ‎【详解】(1)车头进入磁场时线框ab边切割磁感线,有 ‎ ‎ ①‎ 线框中的电流为 ‎ ‎ ②‎ 联立①②式可得 线框所受的安培力为 ‎ ‎ ③‎ 由牛顿第二定律可得 ‎ ‎ ④‎ 联立①②③④式可得 ‎ ‎ ‎ ‎(2)设列车前进速度方向为正方向,由动量定理可得 ‎ ‎ 其中 ,代入上式得 ‎ ⑤‎ 其中 ‎ ⑥‎ 联立⑤⑥式可得 ‎ ‎(3)该方案的优点:利用电磁阻尼现象辅助刹车,可以使列车的加速度平稳减小;可以减小常规刹车的机械磨损等。‎ 该方案的缺点:没有考虑列车车厢和内部线路等也是金属材质,进入磁场时会产生涡流对设备产生不良影响;励磁线圈也需要耗能;线框固定在列车上增加负载且容易出现故障;列车出站时也会受到电磁阻尼等。‎ ‎20.磁学的研究经历了磁荷观点和电流观点的发展历程。‎ ‎(1)早期磁学的研究认为磁性源于磁荷,即磁铁N极上聚集着正磁荷,S极上聚集着负磁荷(磁荷与我们熟悉的电荷相对应)。类似两电荷间的电场力,米歇尔和库仑通过实验测出了两磁极间的作用力,其中p1和p2表示两点磁荷的磁荷量,r是真空中两点磁荷间的距离,Km为常量。‎ 请类比电场强度的定义方法写出磁场强度H的大小及方向的定义;并求出在真空中磁荷量为P0的正点磁荷的磁场中,距该点磁荷为R1处的磁场强度大小H1。‎ ‎(2)安培分子电流假说开启了近代磁学,认为磁性源于运动的电荷,科学的发展证实了分子电流由原子内部电子的运动形成。毕奥、萨伐尔等人得出了研究结论:半径为Rx、电流为Ix的环形电流中心处的磁感应强度大小为,其中Kn为已知常量。‎ a.设氢原子核外电子绕核做圆周运动的轨道半径为r,电子质量为m,电荷量为e,静电力常量为k,求该“分子电流”在圆心处的磁感应强度大小B1。‎ b.有人用电流观点解释地磁成因:在地球内部的古登堡面附近集结着绕地轴转动的管状电子群,转动的角速度为ω,该电子群形成的电流产生了地磁场。如图所示,为简化问题,假设古登堡面的半径为R,电子均匀分布在距地心R、直径为d的管道内,且dR。试证明:此管状电子群在地心处产生的磁感应强度大小B2 ∝ω 。‎ ‎【答案】(1) (2) (3)‎ ‎【解析】‎ ‎【详解】(1)磁场强度H的定义为:放入磁场中某点的检验磁荷所受磁场力的F跟该磁荷的磁荷量P的比值,叫做该点的磁场强度。‎ 定义式为 ‎ 磁场中某点磁场强度的方向与正检验磁荷在该点所受的磁场力方向相同。‎ 在真空中距正点磁荷为R1处放一磁荷量为P的正检验磁荷,则该检验磁荷所受的磁场力为 ‎ 由磁场强度的定义可得 ‎ ‎ ‎ ‎(2)a.设电子绕核做圆周运动的周期为T,由牛顿定律得 ‎ ‎ ① ‎ 等效的“分子电流”大小为 ‎ ② ‎ 分子电流I在圆心处的磁感应强度大小为 ‎ ‎ ③‎ 由①②③式联立可得 ‎ ‎ b.【方法一】‎ 设管状电子群的总电荷量为Q,则其转动的周期为 ‎④‎ 定向转动所形成的等效电流为 ‎ ‎ ⑤‎ 管状电流I1在圆心处的磁感应强度大小为 ‎ ‎ ⑥‎ 由④⑤⑥式联立可得 ‎ ‎ ‎ 所以 ‎ ‎ B2 ∝ω ‎【方法二】由于Rd,管状电子群中电荷绕地轴转动的平均速率为 ‎ ⑦‎ 且短时间内电子运动可近似为直线运动,设单位体积内的电子数为n,则内通过管状电流某横截面的总电荷量为 ‎ ‎ ⑧‎ 管状电流的横截面积为 ‎ ‎ ⑨ ‎ 由电流的定义可得 ‎ ‎ ⑩‎ 由⑥⑦⑧⑨⑩式联立可得 ‎ 所以 ‎ B2 ∝ω ‎【方法三】设管状电子群中单位长度的电子数为N个,则 内通过管状电流某横截面的总电荷量为 ‎ ‎ ‎ 由⑥⑦⑩式联立可得 ‎ 所以 ‎ B2 ∝ω
查看更多

相关文章

您可能关注的文档