- 2021-05-25 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021届高考物理一轮复习6第2讲动量守恒定律及其应用练习含解析
第2讲 动量守恒定律及其应用 考点一 动量守恒定律的理解及应用 动量是否守恒的判断 【典例1】如图所示,A、B两物体的质量之比为mA∶mB=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑。当弹簧突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车),则有 ( ) A.A、B系统动量守恒 B.A、B、C及弹簧整个系统机械能守恒 C.小车C先向左运动后向右运动 D.小车C一直向右运动直到静止 【解析】选D。A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒。在弹簧释放的过程中,因mA∶mB=1∶2,由摩擦力公式Ff=μFN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因存在摩擦力做负功,最终整个系统将静止,则系统的机械能减为零,不守恒,故A、B、C错误,D正确。 【多维训练】(多选)(2019·宣城模拟)如图所示,小车在光滑水平面上向左匀速运动,水平轻质弹簧左端固定在A点,物体与固定在A点的细线相连,弹簧处于压缩状态(物体与弹簧未连接),某时刻细线断了,物体沿车滑动到B端粘在B端的油泥上,取小车、物体和弹簧为一个系统,下列说法正确的是 ( ) A.若物体滑动中不受摩擦力,则该系统全过程机械能守恒 B.若物体滑动中有摩擦力,则该系统全过程动量守恒 18 C.不论物体滑动中有没有摩擦,小车的最终速度与断线前相同 D.不论物体滑动中有没有摩擦,系统损失的机械能相同 【解析】选B、C、D。物体与油泥粘合的过程,发生非弹簧碰撞,系统机械能有损失,故A错误;整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确;取系统的初速度方向为正方向,根据动量守恒定律可知,物体在沿车滑动到B端粘在B端的油泥上后系统共同的速度与初速度是相同的,故C正确;由C的分析可知,当物体与B端油泥粘在一起时,系统的速度与初速度相等,所以系统的末动能与初动能是相等的,系统损失的机械能等于弹簧的弹性势能,与物体滑动中有没有摩擦无关,故D正确。 某一方向上的动量守恒问题 【典例2】(2019·六安模拟)如图所示将一光滑的半圆槽置于光滑水平面上,槽的左侧有一固定在水平面上的物块。今让一小球自左侧槽口A的正上方从静止开始落下,与圆弧槽相切自A点进入槽内,则以下结论中正确的是 ( ) A.小球在半圆槽内运动的全过程中,只有重力对它做功 B.小球在半圆槽内运动的全过程中,小球与半圆槽在水平方向动量守恒 C.小球自半圆槽的最低点B向C点运动的过程中,小球与半圆槽在水平方向动量守恒 D.小球离开C点以后,将做竖直上抛运动 【通型通法】 1.题型特征:水平方向上满足动量守恒。 2.思维导引: 【解析】选C。当小球在槽内由A运动到B的过程中,左侧物块对槽有作用力,小球与槽组成的系统水平方向上的动量不守恒,故B错误;当小球由B运动到C的过程中,因小球对槽有斜向右下方的压力,槽做加速运动,动能增加,小球机械能减少,槽对小球的支持力对小球做了负功,故A错误;小球从B到C的过程中,系统水平方向合外力为零, 18 满足系统水平方向动量守恒,故C正确;小球离开C点以后,既有竖直向上的分速度,又有水平分速度,小球做斜上抛运动,故D错误。 人船模型问题 【典例3】如图所示,质量m=60 kg的人,站在质量M=300 kg的车的一端,车长L=3 m,相对于地面静止。当车与地面间的摩擦可以忽略不计时,人由车的一端走到另一端的过程中,车将 ( ) A.后退0.5 m B.后退0.6 m C.后退0.75 m D.一直匀速后退 【解析】选A。人车组成的系统动量守恒,则mv1=Mv2,所以mx1=Mx2,又有x1+x2=L,解得x2=0.5 m。 1.动量守恒定律的五个特性: 矢量性 动量守恒定律的表达式为矢量方程,解题应选取统一的正方向 相对性 各物体的速度必须是相对同一参考系的速度(一般是相对于地面) 同时性 动量是一个瞬时量,表达式中的p1、p2、…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′、…必须是系统中各物体在相互作用后同一时刻的动量 系统性 研究的对象是相互作用的两个或多个物体组成的系统 普适性 动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统 2.应用动量守恒定律的解题步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程)。 (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒)。 18 (3)规定正方向,确定初、末状态动量。 (4)由动量守恒定律列出方程。 (5)代入数据,求出结果,必要时讨论说明。 3.爆炸现象的三个规律: 动量 守恒 由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒 动能 增加 在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加 位置 不变 爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动 【加固训练】 1.一质量为m的烟花弹获得动能E后,从地面竖直升空。当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量。求: (1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间。 (2)爆炸后烟花弹向上运动的部分距地面的最大高度。 【解析】(1)设烟花弹上升的初速度为v0,由题给条件有E=m ① 设烟花弹从地面开始上升到火药爆炸所用的时间为t,由运动学公式有0-v0= -gt ② 联立①②式得t= ③ (2)设爆炸时烟花弹距地面的高度为h1,由机械能守恒定律有E=mgh1 ④ 火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为v1和v2。由题给条件和动量守恒定律有m+m=E ⑤ mv1+mv2=0 ⑥ 18 由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。设爆炸后烟花弹上部分继续上升的高度为h2,由机械能守恒定律有 m=mgh2 ⑦ 联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为h=h1+h2= ⑧ 答案:(1) (2) 2.(2019·赣州模拟)如图所示,三角形木块A质量为M,置于光滑水平面上,底边长为a,在其顶部有一三角形小木块B质量为m,其底边长为b,若B从顶端由静止滑至底部,则木块后退的距离为 ( ) A. B. C. D. 【解析】】选C。取向右为正方向,设木块后退的距离为x,B从顶端由静止滑至底部时,B向左运动的距离为a-b-x,则水平方向上A的平均速度大小为,B的平均速度大小为,根据水平方向动量守恒得:M-m=0,解得,x=,故选C。 3.如图所示,质量为M的小车静止在光滑的水平面上,小车AB段是半径为R的四分之一光滑圆弧轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点,一质量为m的滑块在小车上从A点静止开始沿AB轨道滑下,然后滑入BC轨道,最后恰好停在C点。已知小车质量M=3m,滑块与轨道BC间的动摩擦因数为μ,重力加速度为g。则 ( ) 18 A.全程滑块水平方向相对地面的位移 R+L B.全程小车相对地面的位移大小s=(R+L) C.滑块m运动过程中的最大速度vm= D.μ、L、R 三者之间的关系为R=4μL 【解析】选B。设全程小车相对地面的位移大小为s,则滑块水平方向相对地面的位移 x=R+L-s。取水平向右为正方向,由水平方向动量守恒得m-M=0,即m-M=0,结合M=3m,解得s=(R+L),x=(R+L),故A错误,B正确;滑块刚滑到B点时速度最大,取水平向右为正方向,由动量守恒定律和机械能守恒分别得0=mvm-Mv、mgR=m+Mv2。联立解得 vm=,故C错误;对整个过程,由动量守恒定律得0=(m+M)v′,得v′=0,由能量守恒定律得mgR=μmgL,得 R=μL,故D错误。 考点二 碰撞问题 碰撞的可能性问题 【典例4】(多选)质量分别为mP=1 kg、mQ=2 kg的小球P、Q静止在光滑的水平面上,现给小球P以水平的速度vP0=4 m/s沿直线朝小球Q运动,并发生正碰,分别用vP、vQ表示两小球碰撞结束的速度。则关于vP、vQ的大小可能的是 ( ) A.vP=vQ= m/s B.vP=-1 m/s,vQ=2.5 m/s C.vP=1 m/s,vQ=3 m/s D.vP=-4 m/s,vQ=4 m/s 18 【解析】选A、B。碰撞前总动量为p=mPvP0=4 kg·m/s,碰撞前总动能为Ek=mP= 8 J。如果vP=vQ= m/s,p′=mPvP+mQvQ=4 kg·m/s,Ek′=mP+mQ= J,碰撞过程动量守恒,能量不增加,A正确;如果vP=-1 m/s,vQ=2.5 m/s,p′=mPvP+mQvQ= 4 kg·m/s,Ek′=mP+mQ=6.75 J,能量不增加,碰撞过程动量守恒,B正确;如果vP=1 m/s,vQ=3 m/s,p′=mPvP+mQvQ=7 kg·m/s,碰撞过程动量不守恒,C错误;如果vP=-4 m/s,vQ=4 m/s,p′=mPvP+mQvQ=4 kg·m/s,Ek′=mP+mQ= 24 J,碰撞过程动量守恒,动能增加,D错误。 【多维训练】质量为m、速度为v的A球与质量为3m的静止的B球发生正碰。碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值,碰撞后B球的速度大小可能是 ( ) A.0.6v B.0.4v C.0.2v D.v 【解析】选B。根据动量守恒定律得mv=mv1+3mv2,则当v2=0.6v时,v1=-0.8v,则碰撞后的总动能Ek′=m(-0.8v)2+×3m(0.6v)2=1.72×mv2,大于碰撞前的总动能,违反了能量守恒定律,故A项错误;当v2=0.4v时,v1=-0.2v,则碰撞后的总动能为Ek′=m(-0.2v)2+×3m(0.4v)2=0.52×mv2,小于碰撞前的总动能,故可能发生的是非弹性碰撞,B项正确;当v2=0.2v时,v1=0.4v,则碰撞后的A球的速度大于B球的速度,而两球碰撞,A球不可能穿透B球,故C项错误;当v2=v时,v1=-2v,显然碰撞后的总动能大于碰撞前的总动能,故D项错误。 弹性碰撞模型 【典例5】如图,水平面上相距为L=5 m的P、Q两点分别固定一竖直挡板,一质量为M=2 kg的小物块B静止在O点,OP段光滑,OQ段粗糙且长度为d=3 m。一质量为m=1 kg的小物块A以v0=6 m/s的初速度从OP段的某点向右运动,并与B发生弹性碰撞。两物块与OQ 18 段间的动摩擦因数均为μ=0.2,两物块与挡板的碰撞时间极短且均不损失机械能。重力加速度g取10 m/s2,求: (1)A与B在O点碰后瞬间各自的速度; (2)两物块各自停止运动时的时间间隔。 【解析】(1)设A、B在O点碰后的速度分别为v1和v2,以向右为正方向。 由动量守恒定律得:mv0=mv1+Mv2 碰撞前后动能相等,则得:m=m+M 解得:v1=-2 m/s,方向向左,v2=4 m/s,方向向右。 (2)碰后,两物块在OQ段减速时加速度大小均为: a=μg=2 m/s2。 B经过t1时间与Q处挡板相碰,由运动学公式: v2t1-a=d 得:t1=1 s(t1=3 s舍去) 与挡板碰后,B的速度大小v3=v2-at1=2 m/s,反弹后减速时间t2==1 s 反弹后经过位移s1==1 m,B停止运动。 物块A与P处挡板碰后,以v4=2 m/s的速度滑上O点,经过s2==1 m停止。 所以最终A、B的距离s=d-s1-s2=1 m, 两者不会碰第二次。 在A、B碰后,A运动总时间tA=+=3 s B运动总时间tB=t1+t2=2 s, 18 则时间间隔ΔtAB=tA-tB=1 s。 答案:(1)2 m/s,方向向左 4 m/s,方向向右 (2)1 s 【多维训练】如图所示,两质量分别为m1和m2的弹性小球A、B叠放在一起,从高度为h处自由落下,h远大于两小球的半径,落地瞬间,B先与地面碰撞,后与A碰撞,所有的碰撞都是弹性碰撞,且都发生在竖直方向、碰撞时间均可忽略不计。已知m2=3m1,则A反弹后能达到的最大高度为 ( ) A.h B.2h C.3h D.4h 【解析】选D。所有的碰撞都是弹性碰撞,所以不考虑能量损失。设竖直向上为正方向,根据机械能守恒定律和动量守恒定律可得,(m1+m2)gh=(m1+m2)v2,m2v-m1v=m1v1+m2v2,(m1+m2)v2=m1+m2,m1=m1gh1,又m2=3m1,则v1>v2≥0,联立可得h1=4h,选项D正确。 完全非弹性碰撞模型 【典例6】如图所示,质量为m=245 g的物块(可视为质点)放在质量为M=0.5 kg的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4。质量为m0=5 g的子弹以速度v0=300 m/s沿水平方向射入物块并留在其中(时间极短),g取10 m/s2。子弹射入后,求: (1)子弹进入物块后子弹和物块一起向右滑行的最大速度v1。 (2)木板向右滑行的最大速度v2。 18 (3)物块在木板上滑行的时间t。 【通型通法】 1.题型特征:满足动量守恒,机械能不守恒。 2.思维导引: 【解析】(1)子弹进入物块后一起向右滑行的初速度即为物块的最大速度,由动量守恒可得: m0v0=(m0+m)v1,解得v1=6 m/s。 (2)当子弹、物块、木板三者同速时,木板的速度最大,由动量守恒定律可得: (m0+m)v1=(m0+m+M)v2, 解得v2=2 m/s。 (3)对物块和子弹组成的整体应用动量定理得: -μ(m0+m)gt=(m0+m)v2-(m0+m)v1, 解得:t=1 s。 答案:(1)6 m/s (2)2 m/s (3)1 s 【举一反三】在例题的基础上,回答下列问题: (1)子弹射入物块并留在其中(时间极短),其中的含义是什么? (2)足够长的木板会使子弹、物块、木板的运动有怎样的结果? (3)当木板的速度v板=1 m/s时,子弹和物块的速度v物是多大?在此过程中物块相对于木板滑行了多远? 【解析】(1)子弹射入物块并留在其中,说明子弹最终与物块同速。时间极短,说明子弹与物块从相互作用到二者同速的过程中,物块在木板上没来得及移动,而木板此时的速度仍为零。 (2)木板足够长,说明物块最终没有滑出木板,三者最终同速,此时木板速度最大。 (3)由动量守恒定律可得: (m0+m)v1=Mv板+(m0+m)v物, 可求得v物=4 m/s 由μ(m0+m)g=(m0+m)a, 18 v物=v1-at′可得t′=0.5 s 所以物块相对于木板滑行的距离 d=t′-t′=2.25 m。 答案:(1)(2)见解析 (3)4 m/s 2.25 m 1.碰撞遵循的三条原则: (1)动量守恒定律。 (2)机械能不增加。 Ek1+Ek2≥Ek1′+Ek2′或+≥+ (3)速度要合理。 ①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大或相等。 ②相向碰撞:碰撞后两物体的运动方向不可能都不改变。 2.弹性碰撞讨论: (1)碰后速度的求解 根据动量守恒和机械能守恒 解得v1′=, v2′= (2)分析讨论: 当碰前物体2的速度不为零时,若m1=m2,则v1′=v2,v2′=v1,即两物体交换速度。 18 当碰前物体2的速度为零时,v2=0,则: v1′=,v2′=, ①m1=m2时,v1′=0,v2′=v1,碰撞后两物体交换速度。 ②m1>m2时,v1′>0,v2′>0,碰撞后两物体沿同方向运动。 ③m1查看更多
相关文章
- 当前文档收益归属上传用户