- 2021-05-14 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
—高考全国卷Ⅰ文科数学函数及其性质汇编
新课标全国卷Ⅰ文科数学分类汇编 函数及其性质(含解析) 一、选择题 【2017,8】函数的部分图像大致为( ) 【2017,9】已知函数,则( ) A.在单调递增 B.在单调递减 C.的图像关于直线对称 D.的图像关于点对称 【2016,8】若,,则( ) A. B. C. D. 【2016,9】函数在的图像大致为( ) A. B. C. D. 【2015,10】已知函数 ,且f(a)=-3,则f(6-a)=( ) A. B. C. D. 【2015,12】设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=( ) C A.-1 B.1 C.2 D.4 【2014,5】5.设函数,的定义域为,且是奇函数,是偶函数,则下列结论中正确的是( ) A.是偶函数 B. 是奇函数 C.是奇函数 D. 是奇函数 【2013,9】函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( ) 【2013,12】已知函数f(x)=若|f(x)|≥ax,则a的取值范围是( ). A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 【2012,11】11.当时,,则的取值范围是( ) A.(0,) B.(,1) C.(1,) D.(,2) 【2011,3】下列函数中,既是偶函数又在单调递增的函数是( ) A. B. C. D. 【2011,10】在下列区间中,函数的零点所在的区间为( ). A. B. C. D. 【2011,12】已知函数的周期为,当时函数,那么函数的图像与函数的图像的交点共有( ). A.个 B.个 C.个 D.个 二、填空题 【2015,14】已知函数f(x)=ax3+x+1的图像在点(1, f(1))的处的切线过点(2,7),则a= . 【2014,15】设函数,则使得成立的的取值范围是_____. 【2012,16】16.设函数的最大值为,最小值为,则_______. 2.函数及其性质(解析版) 一、选择题 【2017,8】函数的部分图像大致为( ) 【解法】选C由题意知,函数为奇函数,故排除B;当时,,排除D;当时,,排除A.. 【2017,9】已知函数,则( ) A.在单调递增 B.在单调递减 C.的图像关于直线对称 D.的图像关于点对称 【解析】(法一)函数的定义域为,, 设,为增函数,当时,为增函数, 为增函数,当时,为减函数,为减函数.排除A,B, 因为是二次函数,图像关于直线对称,故, 所以,的图像关于直线对称,故选 C; (法二),当时,,为增函数. 当时,,为减函数,故排除A,B. 故选 C; 【2016,8】若,,则( ) A. B. C. D. 8.B 解析 由可知是减函数,又,所以.故选B. 评注 作为选择题,本题也可以用特殊值代入验证,如取,,,可快速得到答案. 另外,对于A,,,因为,所以. 又,所以,但正负性无法确定,所以A无法判断. 对于C,D,可分别利用幂函数、指数函数的单调性判断其错误. 【2016,9】函数在的图像大致为( ) A. B. C. D. 解析 :选D. 设,由,可排除A(小于),B(从趋势上超过);又时,,,所以在上不是单调函数,排除C.故选D. 【2015,10】已知函数 ,且f(a)=-3,则f(6-a)=( ) A. B. C. D. 解:∵f(a)=-3,∴当a≤1时,f(a)=2a-1-2=-3,则2a-1=-1,无解.当a>1时,f(a)=-log2(a+1) =-3,则a+1=8,解得a=7,∴f(6-a)=f(-1)= 2-2-2=,故选A. 【2015,12】设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=( ) C A.-1 B.1 C.2 D.4 解:设f(-2)=m,f(-4)=n,则m+n=1,依题点(-2,m)与点(-4,n)关于直线y=-x对称点为(-m,2)与点(-n,4)在函数y=2x+a的图像上,∴2=2-m+a,4=2-n+a,∴-m+a=1,-n+a=2,∴2a=3+m+n=4,∴a=2,故选C 【2014,5】5.设函数,的定义域为,且是奇函数,是偶函数,则下列结论中正确的是( ) A.是偶函数 B. 是奇函数 C.是奇函数 D. 是奇函数 解:设F(x)=f(x)|g(x)|,依题可得F(-x)=-F(x),∴ F(x)为奇函数,故选C 【2013,9】函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( ) 解析:选C. 由f(x)=(1-cos x)sin x知其为奇函数.可排除B.当x∈时,f(x)>0,排除A. 当x∈(0,π)时,f′(x)=sin2x+cos x(1-cos x)=-2cos2x+cos x+1.令f′(x)=0,得. 故极值点为,可排除D. 【2013,12】已知函数f(x)=若|f(x)|≥ax,则a的取值范围是( ). A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 解析:选D.可画出|f(x)|的图象如图所示. 当a>0时,y=ax与y=|f(x)|恒有公共点,所以排除B,C; 当a≤0时,若x>0,则|f(x)|≥ax恒成立. 若x≤0,则以y=ax与y=|-x2+2x|相切为界限,由得x2-(a+2)x=0.∵Δ=(a+2)2=0,∴a=-2.∴a∈[-2,0]. 【2012,11】11.当时,,则的取值范围是( ) A.(0,) B.(,1) C.(1,) D.(,2) 【解析】显然要使不等式成立,必有. 在同一坐标系中画出与的图象. 若时,, 当且仅当, ,即. 解得,故选择B. 【2011,3】下列函数中,既是偶函数又在单调递增的函数是( ) A. B. C. D. 【解析】四个选项中的偶函数只有,,,故排除,当时,三个函数分别为单调递增,单调递减,单调递减.故选B. 【2011,10】在下列区间中,函数的零点所在的区间为( ). A. B. C. D. 【解析】因为,由函数零点存在性定理,可知函数零点处于区间内.故选择C. 【2011,12】已知函数的周期为,当时函数,那么函数的图像与函数的图像的交点共有( ). A.个 B.个 C.个 D.个 【解析】 考查数形结合思想,在同一直角坐标系中作出两个函数的图像,如下图.容易判断出两函数图像的交点个数为个. 故选A. 二、填空题 【2015,14】已知函数f(x)=ax3+x+1的图像在点(1, f(1))的处的切线过点(2,7),则a= . 解:∵f '(x)=3ax2+1,∴切线斜率为f '(1)=3a+1,又切点为(1, a+2),且切线过点(2,7),∴7-(a+2)=3a+1,解得a=1. 【2014,15】设函数,则使得成立的的取值范围是_____. 解:(-∞,8],当x<1时,由ex-1≤2可得x≤1+ln 2,故x<1;当x≥1时,由≤2可得x≤8,故1≤x≤8 ,综上可得x≤8. 【2012,16】16.设函数的最大值为,最小值为,则_______. 【解析】2. . 令,则,因为为奇函数,所以. 所以.查看更多