- 2021-05-14 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学第一轮复习精练检测试题立体几何
高三数学一轮复习精练:立体几何 一、选择题 1.在三棱柱中,各棱长相等,侧掕垂直于底面,点是侧面的中心,则与平面所成角的大小是 ( ) A. B. C. D. w.w.w.k.s.5.u.c.o.m 2.若正四棱柱的底面边长为1,与底面成60°角, 则到底面的距离为 ( ) A. B.1 C. D. 3.一空间几何体的三视图如图所示,则该几何体的体积为( ). 2 2 侧(左)视图 2 2 2 正(主)视图 A. B. C. D. 俯视图 4.已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为( ) (A) (B) (C) (D) 6.已知二面角α-l-β为 ,动点P、Q分别在面α、β内,P到β的距离为,Q到α的距离为,则P、Q两点之间距离的最小值为( ) (A) (B)2 (C) (D)4 7.已知正四棱柱中,为中点,则异面直线与所成的角的余弦值为 ( ) A. B. C. D. 8.如图,正方体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是 (A) (B) (C)三棱锥的体积为定值 (D)异面直线所成的角为定值 9.平面六面体中,既与共面也与共面的棱的条数为( ) A.3 B.4 C.5 D.6 10.如图,已知六棱锥的底面是正六边形,,则下列结论正确的是 A. B.平面 C. 直线∥平面 D. 11.如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是 ( ) A. B. C. D. 12.在正四棱柱中,顶点到对角线和到平面的距离分别为和,则下列命题中正确的是( ) A.若侧棱的长小于底面的变长,则的取值范围为 B.若侧棱的长小于底面的变长,则的取值范围为 C.若侧棱的长大于底面的变长,则的取值范围为 D.若侧棱的长大于底面的变长,则的取值范围为 二、填空题 13.如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点作,为垂足.设,则的取值范围是 . 14.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是________。 15.如图,已知正三棱柱的各条棱长都相等,是侧 棱的中点,则异面直线所成的角的大小是 。 16.已知三个球的半径,,满足,则它们的表面积,,,满足的等量关系是___________. 三、解答题 17.(本题满分12分)如图,平面平面, 是以为斜边的等腰直角三角形,分别为, ,的中点,,. (I)设是的中点,证明:平面; (II)证明:在内存在一点,使平面,并求点到,的距离. 18.(本小题共14分) 如图,四棱锥的底面是正方形,,点E在棱PB上. (Ⅰ)求证:平面; (Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小. 19.(本小题共14分) 如图,在三棱锥中,底面, 点,分别在棱上,且 (Ⅰ)求证:平面; (Ⅱ)当为的中点时,求与平面所成的角的大小; (Ⅲ)是否存在点使得二面角为直二面角?并说明理由. 20.(本小题满分12分) 如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点. (1)求证:平面⊥平面; (2)求直线与平面所成的角;w.w.w.k.s.5.u.c.o.m (3)求点到平面的距离. 21.(本小题满分12分) 如图,正方形所在平面与平面四边形所在平面互相垂直,△ 是等腰直角三角形, (I)求证:; (II)设线段、的中点分别为、,求证: ∥ (III)求二面角的大小。 22.(本小题满分12分) 如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE: (Ⅱ)若二面角C-AE-D的大小为600C,求的值。 参考答案 1.【答案】:C 【解析】:取BC的中点E,则面,w.w.w.k.s.5.u.c.o.m ,因此与平面所成角即为,设,则,,即有. 2.【答案】D 【解析】本题主要考查正四棱柱的概念、 直线与平面所成的角以及直线与平面的距离等概念(第4题解答图) 属于基础知识、基本运算的考查. 依题意,,如图, ,故选D. 3.【答案】:C 【解析】:该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为,四棱锥的底面边长为,高为,所以体积为 所以该几何体的体积为. 【命题立意】:本题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地w.w.w.k.s.5.u.c.o.m 计算出.几何体的体积. 4.【答案】:B. 【解析】:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,,则,反过来则不一定.所以“”是“”的必要不充分条件 . 【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念. 5.【答案】:D 【解析】:设的中点为D,连结D,AD,易知即为异面直线 与所成的角,由三角余弦定理, 易知.故选D 6.【答案】:C 【解析】:如图分别作 ,连 , 又 当且仅当,即重合时取最小值。 7.【答案】:C 【解析】:令则,连∥ 异面直线与所成的角即与所成的角。在中由余弦定理易得。 8.【答案】:D 【解析】:A正确, 易证B显然正确,;C正确,可用等积法求得;D错误。. 9.【答案】:C 【解析】:如图,用列举法知合要求的棱为:、、、、, 10.【答案】:D 【考点定位】本小题考查空间里的线线、线面关系,基础题。(同文6) 解:由三垂线定理,因AD与AB不相互垂直,排除A;作于, 因面面ABCDEF,而AG在面ABCDEF上的射影在AB上,而AB与BC不相互垂直,故排除B;由,而EF是平面PAE的斜线,故排除C,故选择D。 解析2:设低面正六边形边长为,则,由平面可知,且,所以在中有直线与平面所成的角为 ,故应选D。 11.【答案】:B 【考点定位】本小题考查球的截面圆性质、球面距,基础题。(同文9) 【解析】:由知截面圆的半径 ,故,所以两点的球面距离为,故选择B。w.w.w.k.s.5.u.c.o.m 解析2:过球心作平面的垂线交平面与,,则在直线上,由于,,所以,由为等腰直角三角形可得,所以为等边三角形,则两点的球面距离是。 12.【答案】:C 【解析】:设底面边长为1,侧棱长为,过作。 在中,,由三角形面积关系得w.w.w.k.s.5.u.c.o.m 设在正四棱柱中,由于, 所以平面,于是,所以平面,故为点到平面 的距离,在中,又由三角形面积关系得于是,于是当,所以,所以 二、填空题(4题,每题5分) 13.【答案】: 【解析】此题的破解可采用二个极端位置法,即对于F位于DC的中点时,,随着F点到C点时,因平面,即有,对于 ,又,因此有,则有,因此的取值范围是 w.w.w.k.s.5.u.c.o.m 14.【答案】(0,-1,0) w.w.w.k.s.5.u.c.o.m 【解析】设由可得故 15.【答案】:。 【考点定位】本小题考查异面直线的夹角,基础题。 【解析】:不妨设棱长为2,选择基向量,则w.w.w.k.s.5.u.c.o.m ,故填写。 法2:取BC中点N,连结,则面,∴是在面上的射影,由几何知识知,由三垂线定理得,故填写。 16.【答案】 【解析】,,同理:,即R1=,R2=,R3=,由得 三.解答题(6题,共70分) 17.证明:(I)如图,连结OP,以O为坐标原点,分别以OB、OC、OP所在直线为轴,轴,轴,建立空间直角坐标系O,w.w.w.k.s.5.u.c.o.m 则,由题意得,因,因此平面BOE的法向量为 ,得,又直线不在平面内,因此有平面 (II)设点M的坐标为,则,因为平面BOE,所以有,因此有,即点M的坐标为,在平面直角坐标系中,的内部区域满足不等式组,经检验,点M的坐标满足上述不等式组,所以在内存在一点,使平面,由点M的坐标得点到,的距离为.w.w.w.k.s.5.u.c.o.m 18.【解法1】本题主要考查直线和平面垂直、平面与平面垂直、直线与平面所成的角等基础知识,考查空间想象能力、运算能力和推理论证能力. (Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD, ∵, ∴PD⊥AC,∴AC⊥平面PDB, ∴平面. (Ⅱ)设AC∩BD=O,连接OE, 由(Ⅰ)知AC⊥平面PDB于O, ∴∠AEO为AE与平面PDB所的角, ∴O,E分别为DB、PB的中点, ∴OE//PD,,又∵, ∴OE⊥底面ABCD,OE⊥AO, 在Rt△AOE中,, ∴,即AE与平面PDB所成的角的大小为. 【解法2】如图,以D为原点建立空间直角坐标系, 设 则, (Ⅰ)∵, ∴, ∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB, ∴平面. (Ⅱ)当且E为PB的中点时,, 设AC∩BD=O,连接OE, 由(Ⅰ)知AC⊥平面PDB于O, ∴∠AEO为AE与平面PDB所的角, ∵, ∴, ∴,即AE与平面PDB所成的角的大小为. 19.【解法1】本题主要考查直线和平面垂直、直线与平面所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力. (Ⅰ)∵PA⊥底面ABC,∴PA⊥BC. 又,∴AC⊥BC. ∴BC⊥平面PAC. (Ⅱ)∵D为PB的中点,DE//BC, ∴, 又由(Ⅰ)知,BC⊥平面PAC,w.w.w.k.s.5.u.c.o.m ∴DE⊥平面PAC,垂足为点E. ∴∠DAE是AD与平面PAC所成的角, ∵PA⊥底面ABC,∴PA⊥AB,又PA=AB, ∴△ABP为等腰直角三角形,∴, ∴在Rt△ABC中,,∴. ∴在Rt△ADE中,, ∴与平面所成的角的大小. (Ⅲ)∵AE//BC,又由(Ⅰ)知,BC⊥平面PAC,∴DE⊥平面PAC, 又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE, ∴∠AEP为二面角的平面角, ∵PA⊥底面ABC,∴PA⊥AC,∴. ∴在棱PC上存在一点E,使得AE⊥PC,这时, 故存在点E使得二面角是直二面角. 【解法2】如图,以A为原煤点建立空间直角坐标系, 设,由已知可得 . (Ⅰ)∵, ∴,∴BC⊥AP. 又∵,∴BC⊥AC,∴BC⊥平面PAC. (Ⅱ)∵D为PB的中点,DE//BC,∴E为PC的中点, ∴, ∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E. ∴∠DAE是AD与平面PAC所成的角, ∵, ∴. ∴与平面所成的角的大小. w.w.w.k.s.5.u.c.o.m (Ⅲ)同解法1. 20.解:方法(一): (1)证:依题设,M在以BD为直径的球面上,则BM⊥PD. 因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD, 所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD. (2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD, 由(1)知,PD⊥平面ABM,则MN是PN在平面ABM上的射影, 所以 就是与平面所成的角, 且 所求角为 (3)因为O是BD的中点,则O点到平面ABM的距离等于D点到平面ABM距离的一半,由(1)知,PD⊥平面ABM于M,则|DM|就是D点到平面ABM距离. 因为在Rt△PAD中,,,所以为中点,,则O点到平面ABM的距离等于。 方法二: (1)同方法一; (2)如图所示,建立空间直角坐标系,则,,, ,,, 设平面的一个法向量,由可得:,令,则,即.设所求角为,则, 所求角的大小为. (3)设所求距离为,由,得: 21.【解析】解法一: 因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB, 所以BC⊥平面ABEF. 所以BC⊥EF. 因为⊿ABE为等腰直角三角形,AB=AE, 所以∠AEB=45°, 又因为∠AEF=45, 所以∠FEB=90°,即EF⊥BE. 因为BC平面ABCD, BE平面BCE, w.w.w.k.s.5.u.c.o.m BC∩BE=B 所以…………………6分 (II)取BE的中点N,连结CN,MN,则MNPC ∴ PMNC为平行四边形,所以PM∥CN. ∵ CN在平面BCE内,PM不在平面BCE内, ∴ PM∥平面BCE. …………………………………………8分 (III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD. 作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD, 作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH. ∴ ∠FHG为二面角F-BD-A的平面角. ∵ FA=FE,∠AEF=45°, ∠AEF=90°, ∠FAG=45°. 设AB=1,则AE=1,AF=,则 在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=, w.w.w.k.s.5.u.c.o.m , 在Rt⊿FGH中, , ∴ 二面角的大小为……………………………12分 解法二: 因等腰直角三角形,,所以 又因为平面,所以⊥平面, 所以 即两两垂直;如图建立空间直角坐标系, (I) 设,则, ∵,∴, 从而 , 于是, ∴⊥,⊥ ∵平面,平面, ∴ (II),从而 于是 ∴⊥,又⊥平面,直线不在平面内, 故∥平面 (III)设平面的一个法向量为,并设=( 即 w.w.w.k.s.5.u.c.o.m 取,则,,从而=(1,1,3) 取平面D的一个法向量为 ,故二面角的大小为 22.本小题主要考察空间直线与直线、直线与平面的位置关系和二面角等基础知识,考查空间想象能力、推理论证能力和运算求解能力。(满分12分) (Ⅰ)证发1:连接BD,由底面是正方形可得ACBD。 SD平面ABCD,BD是BE在平面ABCD上的射影, 由三垂线定理得ACBE. (II)解法1:SD平面ABCD,CD平面ABCD, SDCD. 又底面ABCD是正方形, CDAD,又SDAD=D,CD平面SAD。 过点D在平面SAD内做DFAE于F,连接CF,则CFAE, 故CFD是二面角C-AE-D 的平面角,即CFD=60° 在Rt△ADE中,AD=, DE= , AE= 。 于是,DF= 在Rt△CDF中,由cot60°= 得, 即=3 , 解得=查看更多