- 2021-05-14 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
新课标备战高考数学文专题复习54直线与圆的方程—直线的方程
第54课时:第七章 直线与圆的方程——直线的方程 课题:直线的方程 一.复习目标: 1.深化理解倾斜角、斜率的概念,熟练掌握斜率公式; 2.掌握直线方程的点斜式、斜截式、两点式、截距式和一般式,并能熟练写出直线方程. 二.知识要点: 1.过两点、的直线斜率公式: . 2.直线方程的几种形式:点斜式: ;斜截式: ; 两点式: ;截距式: ;一般式: . 三.课前预习: 1.设,则直线的倾斜角为 ( ) 2.已知,则过不同三点,,的直线的条数为( ) 多于 3.已知的顶点,,重心,则边所在直线方程为 ;经过点且与轴、轴围成的三角形面积是的直线方程是 ;过点,且它的倾斜角等于已知直线的倾斜角的一半的直线的方程是 . 4.若直线的方向向量是,则直线的倾斜角是 ;若点,,直线过点且与线段相交,则直线的斜率k的取值范围为 . 四.例题分析: 例1.已知直线的方程为,过点作直线,交轴于点,交于点,且,求的方程. 例2.⑴已知,试求被直线所分成的比λ; ⑵已知,,若直线与直线相交于点,不与重合,求证:点分的比. 例3.过点引一条直线,使它在两条坐标轴上的截距都是正数,且它们的和最小,求直线的方程. 例4.的一个顶点,两条高所在直线方程为和,求三边所在直线方程. 五.课后作业: 1.若,则过点与的直线的倾斜角的取值范围是( ) 2.以原点为中心,对角线在坐标轴上,边长为的正方形的四条边的方程为( ) 3.已知三点,,在同一直线上,则的值为 . 4.过点的直线与轴、轴分别交于、两点,点分有向线段所成的比为,则直线的斜率为 ,直线的倾斜角为 . 5.设,,则直线的倾斜角为 . 6.不论为何实数,直线恒过定点 . 7.设过点作直线l交x轴的正半轴、y轴的正半轴于A、B两点, (1)当取得最小值时,求直线l的方程. (2)当取得最小值时,求直线l的方程. 8.对直线上任意一点,点也在直线上,求直线的方程. 9.求过点P(0,1)的直线l,使它包含在两已知直线l1:2x+y-8=0和l2:x-3y+10=0间的线段被点P所平分. 10.设同在一个平面上的动点、的坐标分别是、,并且坐标间存在关系,,当动点在不平行于坐标轴的直线上移动时,动点在与直线垂直且通过的直线上移动,求直线的方程.查看更多