高考必备数学公式全最完整

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考必备数学公式全最完整

高考必背数学公式结论大全 1. , . 2. . 3. 4.集合 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式 ; (2)顶点式 ;当已知抛物线的顶点坐标 时,设为此式 (3)零点式 ;当已知抛物线与 轴的交点坐标为 时,设为此式 4 切线式: 。当已知抛物线与直线 相切且切点的横坐标为 时, 设为此式 6.解连不等式 常有以下转化形式 . 7.方程 在 内有且只有一个实根,等价于 或 。 8.闭区间上的二次函数的最值 二次函数 在闭区间 上的最值只能在 处及区间的两端点处取 得,具体如下: (1)当 a>0 时,若 ,则 ; , , . (2)当 a<0 时,若 ,则 , 若 ,则 , . 9.一元二次方程 =0 的实根分布 1 方程 在区间 内有根的充要条件为 或 ; 2 方程 在区间 内有根的充要条件为 或 或 ; 3 方程 在区间 内有根的充要条件为 或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间 的子区间 形如 , , 不同上含参数的不等式 ( 为参 数)恒成立的充要条件是 。 (2)在给定区间 的子区间 上含参数的不等式 ( 为参数)恒成立的充要条件是 。 (3) 在给定区间 的子区间 上含参数的不等式 ( 为参数)的有解充要条件是 。 (4) 在给定区间 的子区间 上含参数的不等式 ( 为参数)有解的充要条件是 。 对于参数 及函数 .若 恒成立,则 ;若 恒成立,则 ; 若 有解,则 ;若 有解,则 ;若 有解,则 . 若函数 无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有 个 至多有 个 小于 不小于 至多有 个 至少有 个 对所有 ,成立 存在某 ,不成立 或 且 对任何 ,不成立 存在某 ,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 13.四种命题的相互关系(右图): 14.充要条件记 表示条件, 表示结论 1 充分条件:若 ,则 是 充分条件. 2 必要条件:若 ,则 是 必要条件. 3 充要条件:若 ,且 ,则 是 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 15.函数的单调性的等价关系 (1)设 那么 上是增函数; 上是减函数. (2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减 函数. 16.如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 都是增函数,则在公共定义域内,和函数 也是增函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数; 如果函数 和 在其对应的定义域上都是增函数,则复合函数 是增函数;如果函数 和 在其对应的定义域上一个是减函数而另一个是增函数,则复合函数 是减函数. 17.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称;反过来,如果一个函数的图象关于原点对称, 那么这个函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数. 18.常见函数的图像: 19.对于函数 ( ), 恒成立,则函数 的对称轴是 ;两个函数 与 的图象关于直线 对称. 20.若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数. 21.多项式函数 的奇偶性 多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零. 多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零. 22.函数 的图象的对称性 (1)函数 的图象关于直线 对称 . (2)函数 的图象关于直线 对称 . 23.两个函数图象的对称性 (1)函数 与函数 的图象关于直线 (即 轴)对称. (2)函数 与函数 的图象关于直线 对称. (3)函数 和 的图象关于直线 y=x 对称. 24.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象. 25.几个常见的函数方程 (1)正比例函数 . (2)指数函数 . (3)对数函数 . (4)幂函数 . (5)余弦函数 ,正弦函数 , , . 26.几个函数方程的周期(约定 a>0) 1 ,则 的周期 T=a; 2 ,或 ,则 的周期 T=2a; (3) ,则 的周期 T=3a; (4) 且 ,则 的周期 T=4a; 27.分数指数幂 (1) ,且 . (2) ,且 . 28.根式的性质 1 . 2 当 为奇数时, ; 当 为偶数时, . 29.有理指数幂的运算性质 (1) . (2) . (3) . 注:若 a>0,p 是一个无理数,则 ap 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指 数幂都适用. 30.指数式与对数式的互化式: . 31.对数的换底公式 : ( ,且 , ,且 , ). 对数恒等式: ( ,且 , ). 推论 ( ,且 , ). 32.对数的四则运算法则:若 a>0,a≠1,M>0,N>0,则 (1) ; (2) ; (3) ; (4) 。 33.设函数 ,记 .若 的定义域为 ,则 且 ;若 的值域为 ,则 ,且 。 34. 对数换底不等式及其推广:设 , , ,且 ,则 1 . 2 . 35. 平均增长率的问题负增长时 如果原来产值的基础数为 N,平均增长率为 ,则对于时间 的总产值 ,有 . 36.数列的通项公式与前 n 项的和的关系: ( 数列 的前 n 项的和为 ). 37.等差数列的通项公式: ; 其前 n 项和公式为: . 38.等比数列的通项公式: ; 其前 n 项的和公式为 或 . 39.等比差数列 : 的通项公式为 ; 其前 n 项和公式为: . 40.分期付款(按揭贷款) :每次还款 元(贷款 元, 次还清,每期利率为 ). 41.常见三角不等式 1 若 ,则 . (2) 若 ,则 . (3) . 42.同角三角函数的基本关系式 : , = , . 43.正弦、余弦的诱导公式奇变偶不变,符号看象限 , 44.和角与差角公式 ; ; . (平方正弦公式); . = (辅助角 所在象限由点 的象限决定, ). 45.二倍角公式及降幂公式 . . . 46.三角函数的周期公式 函数 ,x∈R 及函数 ,x∈R(A,ω, 为常数,且 A≠0)的周期 ;函数 , (A,ω, 为常数,且 A≠0)的周期 . 三角函数的图像: 五点法作图列表: 0 π/2 π 3π/2 2π 47.正弦定理 : R 为 外接圆的半径. 48.余弦定理 ; ; . 53.面积定理 1 分别表示 a、b、c 边上的高. 2 . 3 . 49.三角形内角和定理 在△ABC 中,有 . 50. 简单的三角方程的通解 . . . 特别地,有 . . . 51.最简单的三角不等式及其解集 . . . . . . 52.实数与向量的积的运算律:设λ、μ为实数,那么 (1) 结合律:λ(μ )=(λμ) ; (2)第一分配律:(λ+μ) =λ +μ ; (3)第二分配律:λ( + )=λ +λ . 53.向量的数量积的运算律: (1) · = · 交换律; (2) · = · = · = · ; (3) + · = · + · . 54.平面向量基本定理 如果 、 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、 λ2,使得 =λ1 +λ2 . 不共线的向量 、 叫做表示这一平面内所有向量的一组基底. 三点 A、B、C 共线的充要条件: (M 为任意点) 55.向量平行的坐标表示 设 = , = ,且 ,则 ( ) . 56. 与 的数量积(或内积): · =| || | 。 57. · 的几何意义: 数量积 · 等于 的长度| |与 在 的方向上的投影| | 的乘积. 向量 在向量 上的投影:| | = . 58.平面向量的坐标运算 (1)设 = , = ,则 + = . (2)设 = , = ,则 - = . (3)设 A ,B ,则 . (4)设 = ,则 = . (5)设 = , = ,则 · = . 59.两向量的夹角公式 ( = , = ). 60.平面两点间的距离公式 = (A ,B ). 61.向量的平行与垂直 :设 = , = ,且 ,则 || =λ . ( ) · =0 . 62.线段的定比分公式 :设 , , 是线段 的分点, 是实数,且 , 则 . 63.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为 、 、 ,则△ABC 的重心的坐标是 . 64.点的平移公式 . 注:图形 F 上的任意一点 P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 . 65.“按向量平移”的几个结论 1 点 按向量 = 平移后得到点 . (2) 函数 的图象 按向量 = 平移后得到图象 ,则 的函数解析式为 . (3) 图象 按向量 = 平移后得到图象 ,若 的解析式 ,则 的函数解析式为 . (4)曲线 : 按向量 = 平移后得到图象 ,则 的方程为 . (5) 向量 = 按向量 = 平移后得到的向量仍然为 = . 66. 三角形五“心”向量形式的充要条件 设 为 所在平面上一点,角 所对边长分别为 ,则 1 为 的外心 . 2 为 的重心 . 3 为 的垂心 . 4 为 的内心 . 5 为 的 的旁心 . 67.常用不等式: 1 (当且仅当 a=b 时取“=”号). 2 (当且仅当 a=b 时取“=”号). 3 4 5 . 6 (当且仅当 a=b 时取“=”号)。 68.最值定理:已知 都是正数,则有 1 若积 是定值 ,则当 时和 有最小值 ; 2 若和 是定值 ,则当 时积 有最大值 . 3 已知 ,若 则有 。 4 已知 ,若 则有 69.一元二次不等式 ,如果 与 同号,则其解集 在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. ; . 70.含有绝对值的不等式 :当 a> 0 时,有 . 或 . 71.无理不等式 1 . 2 . 3 . 72.指数不等式与对数不等式 (1)当 时, ; . (2)当 时, ; 73.斜率公式 、 . 74.直线的五种方程 1 点斜式 (直线 过点 ,且斜率为 ). 2 斜截式 (b 为直线 在 y 轴上的截距). 3 两点式 ( )( 、 ( )). 两点式的推广: 无任何限制条件! (4)截距式 ( 分别为直线的横、纵截距, ) 5 一般式 (其中 A、B 不同时为 0). 直线 的法向量: ,方向向量: 75.两条直线的平行和垂直 (1)若 , ① ; ② . (2)若 , ,且 A1、A2、B1、B2 都不为零, ① ;② ; , , , 此时直线 76.四种常用直线系方程及直线系与给定的线段相交: (1)定点直线系方程:经过定点 的直线系方程为 (除直线 ),其中 是待 定的系数; 经过定点 的直线系方程为 ,其中 是待定的系数. (2)共点直线系方程:经过两直线 , 的交点的直线系方程为 (除 ),其中λ是待定的系数. (3)平行直线系方程:直线 中当斜率 k 一定而 b 变动时,表示平行直线系方程.与直线 平行的直线系方程是 ( ),λ是参变量. (4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是 ,λ是参 变量. (5)直线系 与线段 相交 。 77.点到直线的距离 : (点 ,直线 : ). 78. 或 所表示的平面区域 设直线 ,则 或 所表示的平面区域是: 若 ,当 与 同号时,表示直线 的上方的区域;当 与 异号时,表示直线 的 下方的区域.简言之,同号在上,异号在下. 若 ,当 与 同号时,表示直线 的右方的区域;当 与 异号时,表示直线 的 左方的区域. 简言之,同号在右,异号在左。 79. 或 所表示的平面区域 或 所表示的平面区域是两直线 和 所 成的对顶角区域上下或左右两部分。 80. 圆的四种方程 1 圆的标准方程 . 2 圆的一般方程 ( >0). 3 圆的参数方程 . 4 圆的直径式方程 (圆的直径的端点是 、 ). 81. 圆系方程 (1)过点 , 的圆系方程是 ,其中 是直线 的方程,λ是待定的系 数. (2)过直线 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数. (3) 过圆 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数. 特别地,当 时, 就是 表示: ①当两圆相交时,为公共弦所在的直线方程; ②向两圆所引切线长相等的点的轨迹直线方程 82.点与圆的位置关系:点 与圆 的位置关系有三种 若 ,则 点 在圆外; 点 在圆上; 点 在圆内. 83.直线与圆的位置关系 直线 与圆 的位置关系有三种( ): ; ; . 84.两圆位置关系的判定方法:设两圆圆心分别为 O1,O2,半径分别为 r1,r2, ; ; ; ; . 85.圆的切线方程及切线长公式 (1)已知圆 . ①若已知切点 在圆上,则切线只有一条,其方程是 . 当 圆外时, 表示过两个切点的切点弦方程.求切点弦方 程,还可以通过连心线为直径的圆与原圆的公共弦确定。 ②过圆外一点的切线方程可设为 ,再利用相切条件求 k,这时必有两条切线,注意不要 漏掉平行于 y 轴的切线. ③斜率为 k 的切线方程可设为 ,再利用相切条件求 b,必有两条切线. (2)已知圆 . ①过圆上的 点的切线方程为 ; ②斜率为 的圆的切线方程为 . (3) 过圆 外一点 的切线长为 86.椭圆 的离心率 , 过焦点且垂直于长轴的弦长为: . 87.椭圆 , ; 。 88.椭圆的的内外部 1 点 在椭圆 的内部 . 2 点 在椭圆 的外部 . 89. 椭圆的切线方程 (1)椭圆 上一点 处的切线方程是 . (2)过椭圆 外一点 所引两条切线的切点弦方程是 . (3)椭圆 与直线 相切的条件是 . 90.双曲线 的离心率 ,过焦点且垂直于实轴的弦长为: . , , 。 91.双曲线的内外部 (1)点 在双曲线 的内部 . (2)点 在双曲线 的外部 . 92.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为 渐近线方程: . (2)若渐近线方程为 双曲线可设为 . (3)若双曲线与 有公共渐近线,可设为 ,焦点在 x 轴上, ,焦点在 y 轴上. (4) 焦点到渐近线的距离总是 。 93. 双曲线的切线方程 (1)双曲线 上一点 处的切线方程是 . 2 过双曲线 外一点 所引两条切线的切点弦方程是 . 3 双曲线 与直线 相切的条件是 . 94. 抛物线 的焦半径公式 抛物线 , . (其中θ为 x 轴的正向绕焦点按逆时针方向旋转到 FC 的角) 过焦点弦长 . (其中α为倾斜角) 95.抛物线 上的动点可设为 P 或 P ,其中 . 95.二次函数 的图象是抛物线: 1 顶点坐标为 ;2 焦点的坐标为 ; 3 准线方程是 . 97.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线 相切;以抛物线的半径为直径径的圆必与过顶点垂直于轴的直线相切。 98. 抛物线的切线方程 (1)抛物线 上一点 处的切线方程是 . 2 过抛物线 外一点 所引两条切线的切点弦方程是 . 3 抛物线 与直线 相切的条件是 . 99.两个常见的曲线系方程 (1)过曲线 , 的交点的曲线系方程是 ( 为参数). (2)共焦点的有心圆锥曲线系方程 ,其中 . 当 时,表示椭圆; 当 时,表示双曲线. 100.直线与圆锥曲线相交的弦长公式 或 弦端点 A ,由方程 消去 y 得到 , , 为直线 的倾斜 角, 为直线的斜率, . 101.圆锥曲线的两类对称问题 1 曲线 关于点 成中心对称的曲线是 . 2 曲线 关于直线 成轴对称的曲线是 . 特别地,曲线 关于原点 成中心对称的曲线是 . 曲线 关于直线 轴对称的曲线是 . 曲线 关于直线 轴对称的曲线是 . 曲线 关于直线 轴对称的曲线是 . 曲线 关于直线 轴对称的曲线是 . 102.动点 M 到定点 F 的距离与到定直线 的距离之比为常数 ,若 ,M 的轨迹为椭圆;若 ,M 的轨迹为抛物线;若 ,M 的轨迹为双曲线。 103.证明直线与直线的平行的思考途径 1 转化为判定共面二直线无交点; 2 转化为二直线同与第三条直线平行; 3 转化为线面平行; 4 转化为线面垂直; 5 转化为面面平行. 104.证明直线与平面的平行的思考途径 1 转化为直线与平面无公共点; 2 转化为线线平行; 3 转化为面面平行. 105.证明平面与平面平行的思考途径 1 转化为判定二平面无公共点; 2 转化为线面平行; 3 转化为线面垂直. 106.证明直线与直线的垂直的思考途径 1 转化为相交垂直; 2 转化为线面垂直; 3 转化为线与另一线的射影垂直; 4 转化为线与形成射影的斜线垂直. 107.证明直线与平面垂直的思考途径 1 转化为该直线与平面内任一直线垂直; 2 转化为该直线与平面内相交二直线垂直; 3 转化为该直线与平面的一条垂线平行; 4 转化为该直线垂直于另一个平行平面。 108.证明平面与平面的垂直的思考途径 1 转化为判断二面角是直二面角; 2 转化为线面垂直; (3) 转化为两平面的法向量平行。 109.空间向量的加法与数乘向量运算的运算律 (1)加法交换律: + = + . (2)加法结合律:( + )+ = +( + ). (3)数乘分配律:λ( + )=λ +λ . 110.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始 点的对角线所表示的向量. 111.共线向量定理 对空间任意两个向量 、 ( ≠ ), ∥ 存在实数λ使 =λ . 三点共线 . 、 共线且 不共线 且 不共线. 112.共面向量定理 向量 与两个不共线的向量 、 共面的 存在实数对 ,使 . 推论 空间一点 P 位于平面 MAB 内的 存在有序实数对 ,使 , 或对空间任一定点 O,有序实数对 ,使 . 113.对空间任一点 和不共线的三点 A、B、C,满足 ,则当 时, 对于空间任一点 ,总有 P、A、B、C 四点共面;当 时,若 平面 ABC,则 P、A、B、C 四点共面; 若 平面 ABC,则 P、A、B、C 四点不共面. 四点共面 与 、 共面 平面 ABC. 114.空间向量基本定理 如果三个向量 、 、 不共面,那么对空间任一向量 ,存在一个唯一的有序实数组 x,y,z,使 = x +y +z . 推论 设 O、A、B、C 是不共面的四点,则对空间任一点 P,都存在唯一的三个有序实数 x,y,z,使 . 115.射影公式 已知向量 = 和轴 , 是 上与 同方向的单位向量.作 A 点在 上的射影 ,作 B 点在 上的射影 , 则 116.向量的直角坐标运算 设 = , = 则 (1) + = ; (2) - = ; (3)λ = (λ∈R); (4) · = ; 117.设 A ,B ,则 = . 118.空间的线线平行或垂直 设 , ,则 ; . 119.夹角公式 设 = , = ,则 . 推论 ,此即三维柯西不等式. 120. 正棱锥的侧面与底面所成的角为 ,则 。 特别地,对于正四面体每两个面所成的角为 ,有 。 121.异面直线所成角 = 其中 为异面直线 所成角, 分别表示异面直线 的方向向量 122.直线 与平面所成角 ( 为平面 的法向量). 123.二面角 的平面角根据具体图形确定是锐角或是钝角 或 , 为平面 , 的法向量. 124 折叠角定理 设 AC 是α内的任一条直线,AD 是α的一条斜线 AB 在α内的射影,且 BD⊥AD,垂足为 D,设 AB 与α(AD) 所成的角为 , AD 与 AC 所成的角为 , AB 与 AC 所成的角为 .则 . 125.空间两点间的距离公式 若 A ,B ,则 = . 126.点 到直线 距离 (点 在直线 上, 为直线 的方向向量, = ). 127.异面直线间的距离 ( 是两异面直线,其公垂向量为 , 分别是 上任一点, 为 间的距离). 128.点 到平面 的距离 为平面 的法向量, , 是 的一条斜线段. 129.异面直线上两点距离公式 . . . (两条异面直线 a、b 所成的角为θ,其公垂线段 的长度为 h.在直线 a、b 上分别取两点 E、F, , , ). 130.三个向量和的平方公式 131.作截面的依据 三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 132.棱锥的平行截面的性质 如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到 截面距离与棱锥高的平方比对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的 比等于对应边的比的平方;相应小棱锥的体积与原棱锥的体积的比等于顶点到截面距离与棱锥高的立方 比;相应小棱锥的的侧面积与原棱锥的的侧面积的比等于顶点到截面距离与棱锥高的平方比. 133.球的半径是 R,则其体积 ,其表面积 . 134.球的组合体 (1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方 体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体: 棱长为 的正四面体的内切球的半径为 (正四面体高 的 ),外接球的半径为 (正四面体高 的 ). 135.柱体、锥体的体积 是柱体的底面积、 是柱体的高. 是锥体的底面积、 是锥体的高. 136.分类计数原理加法原理: . 137.分步计数原理乘法原理: . 138.排列数公式 : = = .( , ∈N*,且 ).规定 . 139.排列恒等式 :(1 ;2 ; 3 ; 4 ; 5 . (6) . 140.组合数公式: = = = ( ∈N*, ,且 ). 141.组合数的两个性质:(1) = ;(2) + = .规定 . 142.组合恒等式 1 ;2 ; 3 ; 4 = ; 5 . (6) . (7) . (8) . (9) . (10) . 143.排列数与组合数的关系: . 144.单条件排列以下各条的大前提是从 个元素中取 个元素的排列 1“在位”与“不在位” ①某特元必在某位有 种;②某特元不在某位有 补集思想 着眼位置 着眼元素种. 2 紧贴与插空即相邻与不相邻 ①定位紧贴: 个元在固定位的排列有 种. ②浮动紧贴: 个元素的全排列把 k 个元排在一起的排法有 种. 注:此类问题常用捆绑法; ③插空:两组元素分别有 k、h 个 ,把它们合在一起来作全排列,k 个的一组互不能挨近的所有 排列数有 种. 3 两组元素各相同的插空 个大球 个小球排成一列,小球必分开,问有多少种排法? 当 时,无解;当 时,有 种排法. 4 两组相同元素的排列:两组元素有 m 个和 n 个,各组元素分别相同的排列数为 . 145.分配问题 1(平均分组有归属问题)将相异的 个物件等分给 个人,各得 件,其分配方法数共有 . 2(平均分组无归属问题)将相异的 个物体等分为无记号或无顺序的 堆,其分配方法数共有 . 3(非平均分组有归属问题)将相异的 个物体分给 个人,物件必须被分完,分别得到 , ,…, 件,且 , ,…, 这 个数彼此不相等,则其分配方法数共有 . 4(非完全平均分组有归属问题)将相异的 个物体分给 个人,物件必须被分完,分别 得到 , ,…, 件,且 , ,…, 这 个数中分别有 a、b、c、…个相等,则其分配方法数 有 . 5(非平均分组无归属问题)将相异的 个物体分为任意的 , ,…, 件无记号的 堆, 且 , ,…, 这 个数彼此不相等,则其分配方法数有 . 6(非完全平均分组无归属问题)将相异的 个物体分为任意的 , ,…, 件无记号 的 堆,且 , ,…, 这 个数中分别有 a、b、c、…个相等,则其分配方法数有 . 7(限定分组有归属问题)将相异的 个物体分给甲、乙、丙,……等 个人,物体必须 被分完,如果指定甲得 件,乙得 件,丙得 件,…时,则无论 , ,…, 等 个数是否全相 异或不全相异其分配方法数恒有 . 146.“错位问题” 2 封信与 2 个信封全部错位排列数:1; 3 封信与 3 个信封全部错位排列数:2; 4 封信与 4 个信封全部错位排列数:9; 5 封信与 5 个信封全部错位排列数:44; 一般记着上面的就够了 推广 贝努利装错笺问题:信 封信与 个信封全部错位的组合数为 . 推广: 个元素与 个位置,其中至少有 个元素错位的不同组合总数为 . 147.不定方程 的解的个数 (1)方程 的正整数解有 个. (2) 方程 的非负整数解有 个. (3) 方程 满足条件 ( , )的非负整数解有 个. 148.二项式定理 ; 二项展开式的通项公式 . 的展开式的系数关系: ; ; 。 149.等可能性事件的概率: . 150.互斥事件 A,B 分别发生的概率的和:P(A+B)=P(A)+P(B). 151. 个互斥事件分别发生的概率的和: P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An). 152.独立事件 A,B 同时发生的概率:P(A·B)= P(A)·P(B). 153.n 个独立事件同时发生的概率: P(A1· A2·…· An)=P(A1) · P(A2)·…· P(An) 154.n 次独立重复试验中某事件恰好发生 k 次的概率: 155.离散型随机变量的分布列的两个性质 1 ;2 . 156.数学期望: 157.数学期望的性质 1 . 2 若 ~ ,则 . (3) 若 服从几何分布,且 ,则 . 158.方差: 159.标准差: = . 160.方差的性质 (1) ; (2 若 ~ ,则 . (3) 若 服从几何分布,且 ,则 . 161.方差与期望的关系: . 162.正态分布密度函数: , 式中的实数μ, >0 是参数,分别表示个体的平均数与标准差. 163.标准正态分布密度函数: . 164.对于 ,取值小于 x 的概率: . . 165.回归直线方程 ,其中 . 166.相关系数 : . |r|≤1,且|r|越接近于 1,相关程度越大;|r|越接近于 0,相关程度越小. 167.特殊数列的极限 1 . 2 . 3 无穷等比数列 ( )的和. 168. 函数的极限定理: . 169.函数的夹逼性定理 如果函数 f(x),g(x),h(x)在点 x0 的附近满足: 1 ;2 常数, 则 .本定理对于单侧极限和 的情况仍然成立. 170.几个常用极限 1 , ;2 , . 171.两个重要的极限 1 ;2 (e=2.718281845…). 172.函数极限的四则运算法则 若 , ,则 (1) ;(2) ; (3) . 173.数列极限的四则运算法则 若 ,则 (1) ;(2) ;(3) (4) ( c 是常数). 174. 在 处的导数或变化率或微商 . 175.瞬时速度: . 176.瞬时加速度: . 177. 在 的导数: . 178. 函数 在点 处的导数的几何意义 函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 . 179.几种常见函数的导数 (1) C 为常数.(2) .(3) . (4) . (5) ; . (6) ; . 180.导数的运算法则 1 .2 .3 . 181.复合函数的求导法则 设函数 在点 处有导数 ,函数 在点 处的对应点 U 处有导数 ,则复 合函数 在点 处有导数,且 ,或写作 . 182.常用的近似计算公式当 充分小时 (1) ; ;(2) ; ; (3) ;(4) ;(5) 为弧度; (6) 为弧度;(7) 为弧度 183.判别 是极大小值的方法 当函数 在点 处连续时, 1 如果在 附近的左侧 ,右侧 ,则 是极大值; 2 如果在 附近的左侧 ,右侧 ,则 是极小值. 184.复数的相等: . 185.复数 的模或绝对值 = = . 186.复数的四则运算法则 (1) ; (2) ; (3) ; (4) . 187.复数的乘法的运算律 对于任何 ,有 交换律: . 结合律: . 分配律: . 188.复平面上的两点间的距离公式 , . 189.向量的垂直 非零复数 , 对应的向量分别是 , ,则 的实部为零 为纯虚数 (λ为非零实数). 190.实系数一元二次方程的解 实系数一元二次方程 , ①若 ,则 ; ②若 ,则 ; ③若 ,它在实数集 内没有实数根;在复数集 内有且仅有两个共轭复数根 . 191.三角形的内角平分线性质:在 中, 的 平分线交边 BC 于 D,则 。 三角形的外角平分线也有同样的性质 192. 数学归纳法是一种用于证明与自然数 n 有关的命题的正确性的证明方法. 用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当 n 取第一个值 n0 结论正确; (2)假设当 n=k(k∈N*,且 k≥n0)时结论正确,证明当 n=k+1 时结论也正确. 由(1),(2)可知,命题对于从 n0 开始的所有正整数 n 都正确 193.有理不等式解集的端点,恰好就是其对应的“零点”就是对应方程的解和使分母为零的值. =============================================================================== =============================================================================== ==========================以下重复 (1) ; (2 若 ~ ,则 . (3) 若 服从几何分布,且 ,则 . 161.方差与期望的关系: . 162.正态分布密度函数: , 式中的实数μ, >0 是参数,分别表示个体的平均数与标准差. 163.标准正态分布密度函数: . 164.对于 ,取值小于 x 的概率: . . 165.回归直线方程 ,其中 . 166.相关系数 : . |r|≤1,且|r|越接近于 1,相关程度越大;|r|越接近于 0,相关程度越小. 167.特殊数列的极限 1 . 2 . 3 无穷等比数列 ( )的和. 168. 函数的极限定理: . 169.函数的夹逼性定理 如果函数 f(x),g(x),h(x)在点 x0 的附近满足: 1 ;2 常数, 则 .本定理对于单侧极限和 的情况仍然成立. 170.几个常用极限 1 , ;2 , . 171.两个重要的极限 1 ;2 (e=2.718281845…). 172.函数极限的四则运算法则 若 , ,则 (1) ;(2) ; (3) . 173.数列极限的四则运算法则 若 ,则 (1) ;(2) ;(3) (4) ( c 是常数). 174. 在 处的导数或变化率或微商 . 175.瞬时速度: . 176.瞬时加速度: . 177. 在 的导数: . 178. 函数 在点 处的导数的几何意义 函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 . 179.几种常见函数的导数 (1) C 为常数.(2) .(3) . (4) . (5) ; . (6) ; . 180.导数的运算法则 1 .2 .3 . 181.复合函数的求导法则 设函数 在点 处有导数 ,函数 在点 处的对应点 U 处有导数 ,则复 合函数 在点 处有导数,且 ,或写作 . 182.常用的近似计算公式当 充分小时 (1) ; ;(2) ; ; (3) ;(4) ;(5) 为弧度; (6) 为弧度;(7) 为弧度 183.判别 是极大小值的方法 当函数 在点 处连续时, 1 如果在 附近的左侧 ,右侧 ,则 是极大值; 2 如果在 附近的左侧 ,右侧 ,则 是极小值. 184.复数的相等: . 185.复数 的模或绝对值 = = . 186.复数的四则运算法则 (1) ; (2) ; (3) ; (4) . 187.复数的乘法的运算律 对于任何 ,有 交换律: . 结合律: . 分配律: . 188.复平面上的两点间的距离公式 , . 189.向量的垂直 非零复数 , 对应的向量分别是 , ,则 的实部为零 为纯虚数 (λ为非零实数). 190.实系数一元二次方程的解 实系数一元二次方程 , ①若 ,则 ; ②若 ,则 ; ③若 ,它在实数集 内没有实数根;在复数集 内有且仅有两个共轭复数根 . 191.三角形的内角平分线性质:在 中, 的 平分线交边 BC 于 D,则 。 三角形的外角平分线也有同样的性质 192. 数学归纳法是一种用于证明与自然数 n 有关的命题的正确性的证明方法. 用数学归纳法证明一个与正整数有关的命题的步骤: (1)证明:当 n 取第一个值 n0 结论正确; (2)假设当 n=k(k∈N*,且 k≥n0)时结论正确,证明当 n=k+1 时结论也正确. 由(1),(2)可知,命题对于从 n0 开始的所有正整数 n 都正确 193.有理不等式解集的端点,恰好就是其对应的“零点”就是对应方程的解和使分母为零的值.
查看更多

相关文章

您可能关注的文档