新课标人教A版高考数学理总复习限时规范训练66 直接证明与间接证明

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

新课标人教A版高考数学理总复习限时规范训练66 直接证明与间接证明

第六章 第6讲 ‎(时间:45分钟 分值:100分)‎ 一、选择题 ‎1. [2013·徐州检测] 析法证明:欲使①A>B,只需②Cb   B. ab.‎ ‎3. [2013·南宁质检]要证a2+b2-1-a2b2≤0,只要证明(  )‎ A. 2ab-1-a2b2≤0   B. a2+b2-1-≤0‎ C. -1-a2b2≤0   D. (a2-1)(b2-1)≥0‎ 答案:D 解析:因为a2+b2-1-a2b2≤0,所以(a2-1)(b2-1)≥0,故选D.‎ ‎4. [2013·长宁检测]用反证法证明命题“若sinθ+cosθ·=1,则sinθ≥0且cosθ≥‎0”‎时,下列假设的结论正确的是(  )‎ A. sinθ≥0或cosθ≥0   B. sinθ<0且cosθ<0‎ C. sinθ<0或cosθ<0   D. sinθ>0且cosθ>0‎ 答案:C 解析:由题意,考虑sinθ≥0且cosθ≥0的否定,由于sinθ≥0且cosθ≥0表示sinθ,cosθ大于等于0都成立,故其否定为sinθ,cosθ不都大于等于0,选C.‎ ‎5. [2013·青岛模拟]若a、b、c是不全相等的正数,给出下列判断 ‎①(a-b)2+(b-c)2+(c-a)2≠0;‎ ‎②a>b与a0,a=x+,b=y+,c=z+,则a、b、c三数(  )‎ A. 至少有一个不大于2   B. 都小于2‎ C. 至少有一个不小于2   D. 都大于2‎ 答案:C 解析:假设a、b、c都小于2,则a+b+c<6.‎ 而事实上a+b+c=x++y++z+≥2+2+2=6与假设矛盾,‎ ‎∴a,b,c中至少有一个不小于2.‎ 二、填空题 ‎7. 用反证法证明命题“三角形的三个内角中至少有一个不大于60°”时,假设应该是________.‎ 答案:三角形的三个内角都大于60°‎ ‎8. [2013·保定模拟]若P=+,Q=+,a≥0,则P、Q的大小关系是________.‎ 答案:P0,a3=b3>0,a1≠a3,则a5与b5的大小关系为________.‎ 答案:a5>b5‎ 解析:设公比为q,公差为d.‎ 则a3=a1q2,b3=b1+2d=a1+2d,‎ 由a3=b3,‎ ‎∴2d=a1(q2-1),‎ 又∵a1≠a3,‎ ‎∴q2≠1.‎ ‎∴a5-b5=a1q4-(a1+4d)=a1(q2-1)2>0,‎ ‎∴a5>b5.‎ 三、解答题 ‎10. 设a,b,c都是正数,求证:++≥a+b+c.‎ 证明:∵a,b,c都是正数,∴,,都是正数.‎ ‎∴+≥‎2c,当且仅当a=b时等号成立,‎ +≥‎2a,当且仅当b=c时等号成立,‎ +≥2b,当且仅当a=c时等号成立.‎ 三式相加,得2(++)≥2(a+b+c),‎ 即++≥a+b+c.‎ 当且仅当a=b=c时等号成立.‎ ‎11. 已知a>0,->1,求证:> .‎ 证明:由已知->1及a>0可知0,‎ 只需证·>1,‎ 只需证1+a-b-ab>1,‎ 只需证a-b-ab>0即>1,‎ 即->1,这是已知条件,所以原不等式得证.‎ ‎12. [2013·南京联考]已知函数f(x)=ax+(a>1).‎ ‎(1)证明:函数f(x)在(-1,+∞)上为增函数;‎ ‎(2)用反证法证明方程f(x)=0没有负数根.‎ 证明:(1)任取x1,x2∈(-1,+∞),不妨设x11,ax10‎ 又∵x1+1>0,x2+1>0,‎ ‎∴- ‎= ‎=>0,‎ 于是f(x2)-f(x1)=ax2-ax1+->0,‎ 即f(x2)>f(x1),‎ 故函数f(x)在(-1,+∞)上为增函数.‎ ‎(2)法一:假设存在x0<0(x0≠-1)满足f(x0)=0,则ax0=-.‎ ‎∵a>1,‎ ‎∴00,1>ax0>0,‎ ‎∴f(x0)>0,与f(x0)=0矛盾,‎ 故方程f(x)=0没有负数根.‎
查看更多