高考数学易错题解题方法大全1 4

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学易错题解题方法大全1 4

载 高考数学易错题解题方法大全(1)‎ 一.选择题 ‎ ‎【范例1】已知集合A={x|x=2n—l,n∈Z},B={x|x2一4x<0},则A∩B=( )‎ A. B. C. D.{1,2,3,4}‎ 答案:C ‎【错解分析】此题容易错选为B,错误原因是对集合元素的误解。‎ ‎【解题指导】集合A表示奇数集,集合B={1,2,3,4}.‎ ‎【练习1】已知集合,集合,则( )‎ A. B. C. D. ‎ ‎【范例2】若A、B均是非空集合,则A∩B≠φ是AB的( )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件 答案:B ‎【错解分析】考生常常会选择A,错误原因是混淆了充分性,与必要性。‎ ‎【解题指导】考查目的:充要条件的判定。‎ ‎【练习2】已知条件:,条件:,且是的充分不必要条件,则的取值范围可以是( )‎ A.; B.; C.; D.;‎ ‎【范例3】定义在R上的偶函数满足,且在[-1,0]上单调递增,设, ,,则大小关系是( )‎ A. B. C. D.‎ 答案:D ‎【错解分析】此题常见错误A、B,错误原因对这样的条件认识不充分,忽略了函数的周期性。‎ ‎【解题指导】 由可得,是周期为2 的函数。利用周期性和奇偶性将转化为[-1,0]的函数值,再利用单调性比较.‎ ‎【练习3】设函数f (x)是定义在R上的以5为周期的奇函数,若,,则的取值范围是( )‎ A.(-∞, 0) B.(0, 3) C.(0, +∞) D.(-∞, 0)∪(3, +∞)‎ 载 ‎【范例4】的值为( )‎ A.-4 B.4 C.2 D.-2‎ 答案:D ‎【错解分析】此题常见错误A、C,错误原因是对两倍角公式或对对数运算性质不熟悉。‎ ‎【解题指导】结合对数的运算性质及两倍角公式解决.‎ ‎【练习4】式子值是( )‎ A.-4 B.4 C.2 D.-2‎ ‎【范例5】设是方程的解,且,则( )‎ A.4 B.5 C.7 D.8‎ 答案:C ‎【错解分析】本题常见错误为D,错误原因没有考虑到函数y=8-x与y=lgx图像的结合。‎ ‎【解题指导】考查零点的概念及学生的估算能力.‎ ‎【练习5】方程的实数根有( )个.‎ A.0 B.1 C.2 D.3‎ ‎【范例6】已知∠AOB=lrad,点Al,A2,…在OA上,‎ B1,B2,…在OB上,其中的每一个实线段和 虚线段氏均为1个单位,一个动点M从O点 出发,沿着实线段和以O为圆心的圆弧匀速 运动,速度为l单位/秒,则质点M到达A10‎ 点处所需要的时间为( ) 秒。‎ A.62 B.63 C.65 D.66‎ 答案:C ‎【错解分析】本题常见错误B、D,这样的错误常常由于是信息图片信息把握力不强。‎ ‎【解题指导】本题综合考察等差数列求和,及扇形的弧长公式。要细读题,理解动点的运动规律。‎ ‎【练习6】如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则表上数字标签:‎ ‎1‎ ‎2‎ ‎13‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ ‎0‎ 原点处标0,点(1,0)处标1,点(1,-1)处 标2,点(0,-1)处标3,点(-1,-1)处标4,‎ 点(-1,0)标5,点(-1,1)处标6,点(0,1)‎ 处标7,以此类推,则标签的格点的坐标 为( )‎ A.(1005,1004) B.(1004.1003) ‎ ‎ C.(2009,2008) D.(2008,2007)‎ 二.填空题 ‎ O P1‎ P0‎ P2‎ ‎【范例7】如图,点P是单位圆上的一个顶点,它从初始位置开 载 始沿单位圆按逆时针方向运动角()到达点,‎ 然后继续沿单位圆逆时针方向运动到达点,若点的横 坐标为,则的值等于 . ‎ 答案:‎ ‎【错解分析】本题常见错误写成的相反数,这样的错误常常是忽略角度所在的象限。‎ ‎【解题指导】本题主要考察三角函数的定义,及对两角和与差公式的理解。‎ ‎【练习7】已知 . ‎ ‎【范例8】已知向量,其中、均为非零向量,则的取值范围是 .‎ 答案:‎ ‎【错解分析】本题常见错误五花八门,错误原因是没有理解向量的模的不等式的性质。‎ ‎【解题指导】分别表示与、同向的单位向量, ‎ ‎【练习8】△ABC中,,,则的最小值是 .‎ ‎【范例9】若不等式恒成立,则实数a的取值范围是 .‎ 答案:‎ ‎【错解分析】解含绝对值不等式也是考生常常出现错误的,错误原因有解法单一,比如只会运用去绝对值的方法,这样会导致计算量较多,易错。通常简捷的方法可以是利用绝对值的几何意义。‎ ‎【解题指导】由绝对值的几何意义知的最小值为3.‎ ‎【练习9】不等式|x+1|(2x-1)≥0的解集为 .‎ ‎【范例10】圆被直线分成两段圆弧,则较短弧长与较长弧长之比为 .‎ 答案:1∶3‎ ‎【错解分析】圆与直线的位置关系的错误点通常是考生找错了圆的圆心,判断不了圆的位置,在花函数图像是产生了偏差。‎ ‎【解题指导】对直线与圆的位置关系通常考查两点,(1)直线与圆相切时利用d=r建立关系式,‎ ‎(2)直线与圆相交时画图利用勾股定理建立关系式.‎ ‎【练习10】已知直线与圆交于A、B两点,O是坐标原点,向量、 载 满足|+|=|-|,则实数的值是 .‎ ‎【范例11】一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为__________.‎ 答案:8π ‎【错解分析】球体是近年高考通常所设计的集合体,通常也是考生容易 出错的一个地方,通常的错误是对球体的与题目结合时候空间想象力缺乏 导致,或者计算的时候计算不出球的半径等。‎ ‎【解题指导】过球心与小圆圆心做球的截面,转化为平面几何来解决.‎ ‎【练习11】如图,已知一个多面体的平面展开图由一边长为1的正方 体和4个边长为1的正三角形组成,则该多面体的体积是 .‎ ‎【范例12】已知过点的直线与轴正半轴、轴正半轴分别交于、两点,则的面积最小为 .‎ 答案:4‎ ‎【错解分析】本题考查均值不等式和数形结合,也是考生容易错误的地方,例如不会利用均值不等式,或者没有看出均值不等式中隐含的“面积”。‎ ‎【解题指导】设直线方程为,代点得: .由于,所以,所以 ‎【练习12】函数的图象恒过定点,若点在直线上,其中,则的最小值为 .‎ 三.解答题 ‎ ‎【范例13】已知点P(4,4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.‎ ‎(1)求m的值与椭圆E的方程;‎ ‎(2)设Q为椭圆E上的一个动点,求的取值范围.‎ ‎【错解分析】本题易错点(1)在于计算椭圆的方程的量本身就大,方法和计算技巧的运用很重要。‎ 解:(1)点A代入圆C方程,得.‎ ‎∵m<3,∴m=1.圆C:.‎ 设直线PF1的斜率为k,则PF1:,‎ 即.∵直线PF1与圆C相切,∴.解得. ‎ 载 当k=时,直线PF1与x轴的交点横坐标为,不合题意,舍去.‎ 当k=时,直线PF1与x轴的交点横坐标为-4,∴c=4.F1(-4,0),F2(4,0). ‎ ‎ 2a=AF1+AF2=,,a2=18,b2=2.‎ 椭圆E的方程为:.‎ ‎(2),设Q(x,y),,. ‎ ‎∵,即 而,∴-18≤6xy≤18. ‎ ‎ ∴的取值范围是[0,36],‎ 即的取值范围是[-6,6].‎ ‎∴的取值范围是[-12,0].‎ ‎【练习13】已知圆上的动点,点Q在NP上,点G在MP上,且满足.‎ ‎ (1)求点G的轨迹C的方程;‎ ‎ (2)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程;若不存在,试说明理由.‎ ‎【范例14】如图,在矩形ABCD中,已知A(2,0)、C(-2,2),点P在BC边上移动,线段OP的垂直平分线交y轴于点E,点M满足 ‎(1)求点M的轨迹方程;‎ ‎(2)已知点F(0,),过点F的直线l交点M的轨迹于Q、R两点,且求实数的取值范围.‎ ‎【错解分析】向量的综合题型考察的范围可以很广,这样的题型容易产生画图不准确,题意模糊的错误,导致考生无法作答,因此要理解题意,把握条件,学会精确画图。‎ 解:(1)依题意,设P(t,2)(-2≤t≤2),M(x,y).‎ 当t=0时,点M与点E重合,则M=(0,1),‎ 当t≠0时,线段OP的垂直平分线方程为: ‎ 载 ‎ ‎ ‎ 显然,点(0,1)适合上式 .故点M的轨迹方程为x2=-4(y-1)( -2≤x≤2) ‎ ‎(2)设得x2+4k-2=0.‎ ‎ 设Q(x1,y1)、R(x2,y2),则 ‎,.消去x2,得. ‎ 解得 ‎【练习14】已知抛物线C的一个焦点为F(,0),对应于这个焦点的准线方程为x=-.‎ ‎(1)写出抛物线C的方程;‎ ‎(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程;‎ ‎(3)点P是抛物线C上的动点,过点P作圆(x-3)2+y2=2的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.‎ ‎【范例15】如图:在三棱锥中,面,是直角三角形,,,,点分别为的中点。‎ ‎⑴求证:;‎ ‎⑵求直线与平面所成的角的大小;‎ ‎⑶求二面角的正切值。‎ ‎【错解分析】立体几何是高考的必考内容,容易错误的地方通常是求二面角的大小,因此要归纳总结通常寻找二面角的平面角的方法。‎ 解:⑴连结。在中,‎ ‎,点为的中点,‎ 又面,即为在平面内的射影 载 分别为的中点 ‎⑵面,‎ 连结交于点,,‎ 平面 为直线与平面所成的角,且 面,,又 ‎,,‎ 在中,,‎ ‎⑶过点作于点,连结,,‎ 面,即为在平面内的射影 ‎,为二面角的平面角 ‎ 中,,‎ ‎【练习15】如图所示,正三棱柱的底面边长是2,侧棱长是,D是AC的中点。‎ ‎(1)求证:平面;‎ ‎(2)求二面角的大小;‎ ‎(3)求直线与平面所成的角的正弦值。‎ 练习题参考答案:‎ ‎1.C 2.A 3.B 4.C 5.C 6.A ‎ ‎7. -1 8. 9. 10. 2或-2 11. 12. 4‎ 载 ‎13. 解:(1)Q为PN的中点且GQ⊥PN ‎ GQ为PN的中垂线|PG|=|GN| ‎ ‎ ∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长,半焦距,∴短半轴长b=2,∴点G的轨迹方程是。‎ ‎ (2)因为,所以四边形OASB为平行四边形 ‎ 若存在l使得||=||,则四边形OASB为矩形 ‎ 若l的斜率不存在,直线l的方程为x=2,由 ‎ 矛盾,故l的斜率存在. ‎ ‎ 设l的方程为 ‎ ‎ ‎ ①‎ ‎ ② ‎ ‎ 把①、②代入 ‎ ∴存在直线使得四边形OASB的对角线相等.‎ ‎14. 解:(1)抛物线方程为:y2=2x. ‎ ‎(2)①当直线不垂直于x轴时,设方程为y=k(x-),代入y2=2x,得:k2x2-(k2+2)x+.‎ 设A(x1,y1),B(x2,y2),则x1+x2=,y1+y2=k(x1+x2-1)=.‎ 载 设△AOB的重心为G(x,y)则,消去k得y2=为所求,‎ ‎②当直线垂直于x轴时,A(,1),B(,-1),△AOB的重心G(,0)也满足上述方程.‎ 综合①②得,所求的轨迹方程为y2=,‎ ‎(3)设已知圆的圆心为Q(3,0),半径r=,‎ 根据圆的性质有:|MN|=2. ‎ 当|PQ|2最小时,|MN|取最小值,‎ 设P点坐标为(x0,y0),则y=2x0.|PQ|2=(x0-3)2+ y= x-4x0+9=(x0-2)2+5,‎ ‎∴当x0=2,y0=±2时,|PQ|2取最小值5,‎ 故当P点坐标为(2,±2)时,|MN|取最小值. ‎ ‎15. 解法一:(1)设与相交于点P,连接PD,则P为中点,‎ D为AC中点,PD//.‎ 又PD平面D,//平面D ‎ ‎(2)正三棱住, 底面ABC。‎ 又BDACBD 就是二面角的平面角。‎ ‎=,AD=AC=1tan =‎ ‎=, 即二面角的大小是 ‎(3)由(2)作AM,M为垂足。‎ BDAC,平面平面ABC,平面平面ABC=AC BD平面,AM平面,BDAM 载 BD = DAM平面,连接MP,则就是直线与平面D所成的角。‎ ‎=,AD=1,在RtD中,=,‎ ‎,,‎ 直线与平面D所成的角的正弦值为 解法二:(1)同解法一(2)如图建立空间直角坐标系,‎ 则D(0,0,0),A(1,0,0),(1,0,),B(0,,0),(0,,)‎ ‎=(-1,,-),=(-1,0,-)‎ 设平面的法向量为n=(x,y,z)‎ 则n n 则有,得n=(,0,1)‎ 由题意,知=(0,0,)是平面ABD的一个法向量。‎ 设n与所成角为,则,‎ 二面角的大小是 ‎(3)由已知,得=(-1,,),n=(,0,1)则 直线与平面D所成的角的正弦值为.‎
查看更多

相关文章

您可能关注的文档