- 2021-05-14 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2008高考天津数学理科试卷含详细解答全word版
2008年普通高等学校招生全国统一考试(天津卷) 数学(理工类) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分.考试用时120分钟.第I卷1至2页,第II卷3至10页.考试结束后,将本试卷和答题卡一并交回. 祝各位考生考试顺利! 第I卷 注意事项: 1.答第I卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上.并在规定位置粘贴考试用条形码. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分. 参考公式: 如果事件互斥,那么 球的表面积公式 球的体积公式 如果事件相互独立,那么 其中表示球的半径 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.是虚数单位,( ) A. B. C. D. 2.设变量满足约束条件则目标函数的最大值为( ) A.2 B.3 C.4 D.5 3.设函数,则是( ) A.最小正周期为的奇函数 B.最小正周期为的偶函数 C.最小正周期为的奇函数 D.最小正周期为的偶函数 4.设是两条直线,是两个平面,则的一个充分条件是( ) A. B. C. D. 5.设椭圆上一点到其左焦点的距离为3,到右焦点的距离为1,则到右准线的距离为( ) A.6 B.2 C. D. 6.设集合,,,则的取值范围是( ) A. B. C.或 D.或 7.设函数的反函数为,则( ) A.在其定义域上是增函数且最大值为1 B.在其定义域上是减函数且最小值为0 C.在其定义域上是减函数且最大值为1 D.在其定义域上是增函数且最小值为0 8.已知函数则不等式的解集是( ) A. B. C. D. 9.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则( ) A. B. C. D. 10.有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有( ) A.1344种 B.1248种 C.1056种 D.960种 2008年普通高等学校招生全国统一考试(天津卷) 数学(理工类) 第Ⅱ卷 注意事项: 1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分. 二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. 11.的二项展开式中的系数是 (用数字作答). 12.一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为 . B A C D 13.已知圆的圆心与抛物线的焦点关于直线对称,直线与圆相交于两点,且,则圆的方程为 . 14.如图,在平行四边形中,,, 则 . 15.已知数列中,,,则 . 16.设,若仅有一个常数使得对于任意的,都有满足方程,这时的取值的集合为 . 三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知,. (Ⅰ)求的值; (Ⅱ)求的值. 18.(本小题满分12分) 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为. (Ⅰ)求乙投球的命中率; (Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望. 19.(本小题满分12分) A B C D P 如图,在四棱锥中,底面是矩形.已知,,,,. (Ⅰ)证明平面; (Ⅱ)求异面直线与所成的角的大小; (Ⅲ)求二面角的大小. 20.(本小题满分12分) 已知函数,其中. (Ⅰ)若曲线在点处的切线方程为,求函数的解析式; (Ⅱ)讨论函数的单调性; (Ⅲ)若对于任意的,不等式在上恒成立,求的取值范围. 21.(本小题满分14分) 已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是. (Ⅰ)求双曲线的方程; (Ⅱ)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围. 22.(本小题满分14分) 在数列与中,,,数列的前项和满足,为与的等比中项,. (Ⅰ)求,的值; (Ⅱ)求数列与的通项公式; (Ⅲ)设,证明. 2008年普通高等学校招生全国统一考试(天津卷) 数学(理工类)参考解答 一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.B 4.C 5.B 6.A 7.D 8.C 9.A 10.B 二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.40 12.24 13. 14.3 15. 16. 三、解答题 17.本小题主要考查同角三角函数的基本关系式、特殊角三角函数值、两角和的正弦、两角差的余弦、二倍角的正弦与余弦等基础知识,考查基本运算能力.满分12分. (Ⅰ)解法一:因为,所以,于是 . . 解法二:由题设得,即. 又,从而,解得或. 因为,所以. (Ⅱ)解:因为,故. ,. 所以, . 18.本小题主要考查随机事件、互斥事件、相互独立事件的概率,离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. (Ⅰ)解:设“甲投球一次命中”为事件,“乙投球一次命中”为事件, 由题意得 , 解得或(舍去),所以乙投球的命中率为. (Ⅱ)解:由题设和(Ⅰ)知,,,. 可能的取值为0,1,2,3,故 , , , . 的分布列为 的数学期望. 19.本小题主要考查直线和平面垂直、异面直线所成的角、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分. (Ⅰ)证明:在中,由题设,,,可得,于是.在矩形中,,又,所以平面. (Ⅱ)解:由题设,,所以(或其补角)是异面直线与所成的角. A B C D P H E 在中,由余弦定理得 . 由(Ⅰ)知平面,平面, 所以,因而,于是是直角三角形, 故. 所以异面直线与所成的角的大小为. (Ⅲ)解:过点作于,过点作于,连结. 因为平面,平面,所以.又,因而平面,故为在平面内的射影.由三垂线定理可知,.从而是二面角的平面角. 由题设可得, ,, ,, . 于是在中,. 所以二面角的大小为. 20.本小题主要考查导数的几何意义、利用导数研究函数的单调性、解不等式等基础知识,考查运算能力、综合分析和解决问题的能力.满分12分. (Ⅰ)解:,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. (Ⅱ)解:. 当时,显然,这时在,内是增函数. 当时,令,解得. 当变化时,,的变化情况如下表: ↗ 极大值 ↘ ↘ 极小值 ↗ 所以在,内是增函数,在,内是减函数. (Ⅲ)解:由(Ⅱ)知,在上的最大值为与中的较大者,对于任意的,不等式在上恒成立,当且仅当 即 对任意的成立. 从而得,所以满足条件的的取值范围是. 21.本小题主要考查双曲线的标准方程和几何性质、直线方程、两条直线垂直、线段的定比分点等基础知识,考查曲线和方程的关系等解析几何的基本思想方法,考查推理、运算能力.满分14分. (Ⅰ)解:设双曲线的方程为,由题设得 解得 所以双曲线的方程为. (Ⅱ)解:设直线的方程为,点,的坐标满足方程组 将①式代入②式,得,整理得 . 此方程有两个不等实根,于是,且 .整理得 . ③ 由根与系数的关系可知线段的中点坐标满足 ,. 从而线段的垂直平分线的方程为 . 此直线与轴,轴的交点坐标分别为,.由题设可得 . 整理得 ,. 将上式代入③式得, 整理得 ,. 解得或. 所以的取值范围是. 22.本小题主要考查等差数列的概念、通项公式及前项和公式、等比数列的概念、等比中项、不等式证明、数学归纳法等基础知识,考查运算能力和推理论证能力及分类讨论的思想方法.满分14分. (Ⅰ)解:由题设有,,解得.由题设又有,,解得. (Ⅱ)解法一:由题设,,,及,, 进一步可得,,,,猜想 ,,. 先证,. 当时,,等式成立.当时用数学归纳法证明如下: (1)当时,,等式成立. (2)假设当时等式成立,即,. 由题设, , ① . ② ①的两边分别减去②的两边,整理得,从而 . 这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的成立. 综上所述,等式对任何的都成立. 再用数学归纳法证明,. (1)当时,,等式成立. (2)假设当时等式成立,即,那么 . 这就是说,当时等式也成立.根据(1)和(2)可知,等式对任何的都成立. 解法二:由题设 , ① . ② ①的两边分别减去②的两边,整理得,,所以 , , …… ,. 将以上各式左右两端分别相乘,得 , 由(Ⅰ)并化简得 ,. 上式对,也成立. 由题设有,所以,即 ,. 令,则,即.由得,.所以 .即 ,. 解法三:由题设有,,所以 , , …… ,. 将以上各式左右两端分别相乘,得 , 化简得 ,. 由(Ⅰ),上式对,也成立.所以 ,. 上式对也成立. 以下同解法二,可得,. (Ⅲ)证明: . 当,时, . 注意到,故 . 当,时, . 当,时, . 当,时, . 所以, 从而时,有 总之,当时有,即.查看更多