高考物理专题复习一力与物体平衡考点例析

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考物理专题复习一力与物体平衡考点例析

专题一:力与物体平衡考点例析 力学中的三类常见的力:重力、弹力、摩擦力,特别是静摩擦力,这是高考中常考的内容。由于静摩擦力随物体的相对运动趋势发生变化,在分析中非常容易失误,同学们一定要下功夫把静摩擦力弄清楚。共点力作用下物体的平衡,是高中物理中重要的问题,几乎是年年必考。单纯考查本章内容多以选择、填空为主,难度适中,与其它章节结合的则以综合题出现,也是今后高考的方向.‎ 一、夯实基础知识 ‎(一).力的概念:力是物体对物体的作用。‎ ‎1.力的基本特征(1)力的物质性:力不能脱离物体而独立存在。(2)力的相互性:力的作用是相互的。(3)力的矢量性:力是矢量,既有大小,又有方向。(4)力的独立性:力具有独立作用性,用牛顿第二定律表示时,则有合力产生的加速度等于几个分力产生的加速度的矢量和。‎ ‎2.力的分类:‎ ‎(1)按力的性质分类:如重力、电场力、磁场力、弹力、摩擦力、分子力、核力等 ‎(2)按力的效果分类:如拉力、推力、支持力、压力、动力、阻力等.‎ ‎(二)、常见的三类力。‎ ‎1.重力:重力是由于地球的吸引而使物体受到的力。‎ ‎(1)重力的大小:重力大小等于mg,g是常数,通常等于9.8N/kg.‎ ‎(2)重力的方向:竖直向下的.‎ ‎(3)重力的作用点—重心:重力总是作用在物体的各个点上,但为了研究问题简单,我们认为一个物体的重力集中作用在物体的一点上,这一点称为物体的重心.‎ ‎①质量分布均匀的规则物体的重心在物体的几何中心.‎ ‎②不规则物体的重心可用悬线法求出重心位置.‎ ‎2.弹力:发生弹性形变的物体,由于要恢复原状,对跟它接触的物体会产生力的作用,这种力叫做弹力.‎ ‎(1)弹力产生的条件:①物体直接相互接触; ②物体发生弹性形变.‎ ‎(2)弹力的方向:跟物体恢复形状的方向相同.‎ 一般情况:凡是支持物对物体的支持力,都是支持物因发生形变而对物体产生的弹力;支持力的方向总是垂直于支持面并指向被支持的物体. 一般情况:凡是一根线(或绳)对物体的拉力,都是这根线(或绳)因为发生形变而对物体产生的弹力;拉力的方向总是沿线(或绳)的方向. 弹力方向的特点:由于弹力的方向跟接触面垂直,面面结触、点面结触时弹力的方向都是垂直于接触面的. (3)弹力的大小:①与形变大小有关,弹簧的弹力F=kx②可由力的平衡条件求得.‎ ‎3.滑动摩擦力:一个物体在另一个物体表面上存在相对滑动的时候,要受到另一个物体阻碍它们相对滑动的力,这种力叫做滑动摩擦力.‎ ‎(1)产生条件:①接触面是粗糙;②两物体接触面上有压力;③两物体间有相对滑动.‎ ‎(2)方向:总是沿着接触面的切线方向与相对运动方向相反.‎ ‎(3)大小:与正压力成正比,即Fμ=μFN ‎4.静摩擦力:当一个物体在另一个物体表面上有相对运动趋势时,所受到的另一个物体对它的力,叫做静摩擦力.‎ ‎(1)产生条件:①接触面是粗糙的;②两物体有相对运动的趋势;③两物体接触面上有压力.‎ ‎(2)方向:沿着接触面的切线方向与相对运动趋势方向相反.‎ ‎(3)大小:由受力物体所处的运动状态根据平衡条件或牛顿第二定律来计算.‎ ‎(三)、力的合成与分解 ‎1.合力和力的合成:一个力产生的效果如果能跟原来几个力共同作用产生的效果相同,这个力就叫那几个力的合力,求几个力的合力叫力的合成.‎ ‎2.力的平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边作平行四边形,合力的大小和方向就可以用这个平行四边形的对角线表示出来。‎ ‎3.分力与力的分解:如果几个力的作用效果跟原来一个力的作用效果相同,这几个力叫原来那个力的分力.求一个力的分力叫做力的分解.‎ ‎4.分解原则:平行四边形定则.‎ 力的分解是力的合成的逆运算,同一个力F可以分解为无数对大小,方向不同的分力,一个已知力究竟怎样分解,要根据实际情况来确定,根据力的作用效果进行分解.‎ ‎(四)共点力的平衡 ‎1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力.‎ ‎ 2.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态.‎ ‎ 3.共点力作用下物体的平衡条件:合力为零,即0.‎ ‎ 4.力的平衡:作用在物体上几个力的合力为零,这种情形叫做力的平衡.‎ ‎(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡.‎ ‎(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上.‎ ‎(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成:‎ 二、解析典型问题 问题1:弄清滑动摩擦力与静摩擦力大小计算方法的不同。‎ 当物体间存在滑动摩擦力时,其大小即可由公式计算,由此可看出它只与接触面间的动摩擦因数及正压力N有关,而与相对运动速度大小、接触面积的大小无关。‎ A C B F α 图1‎ 正压力是静摩擦力产生的条件之一,但静摩擦力的大小与正压力无关(最大静摩擦力除外)。当物体处于平衡状态时,静摩擦力的大小由平衡条件来求;而物体处于非平衡态的某些静摩擦力的大小应由牛顿第二定律求。‎ 例1、 如图1所示,质量为m,横截面为直角三角形的物块ABC,,AB边靠在竖直墙面上,F是垂直于斜面BC的推力,现物块静止不动,则摩擦力的大小为_________。‎ P 图2‎ Q θ ‎ 分析与解:物块ABC受到重力、墙的支持力、摩擦力及推力四个力作用而平衡,由平衡条件不难得出静摩擦力大小为 ‎ 。‎ 例2、如图2所示,质量分别为m和M的两物体P和Q叠放在倾角为θ的斜面上,P、Q之间的动摩擦因数为μ1,Q与斜面间的动摩擦因数为μ2。当它们从静止开始沿斜面滑下时,两物体始终保持相对静止,则物体P受到的摩擦力大小为:‎ A.0; B. μ1mgcosθ; ‎ ‎ C. μ2mgcosθ; D. (μ1+μ2)mgcosθ;‎ 分析与解:当物体P和Q一起沿斜面加速下滑时,其加速度为:a=gsinθ-μ2gcosθ.‎ 因为P和Q相对静止,所以P和Q之间的摩擦力为静摩擦力,不能用公式求解。对物体P运用牛顿第二定律得: mgsinθ-f=ma 所以求得:f=μ2mgcosθ.即C选项正确。‎ 问题2.弄清摩擦力的方向是与“相对运动或相对运动趋势的方向相反”。‎ V1‎ V2‎ C A B 图3‎ 滑动摩擦力的方向总是与物体“相对运动”的方向相反。所谓相对运动方向,即是把与研究对象接触的物体作为参照物,研究对象相对该参照物运动的方向。当研究对象参与几种运动时,相对运动方向应是相对接触物体的合运动方向。静摩擦力的方向总是与物体“相对运动趋势”的方向相反。所谓相对运动趋势的方向,即是把与研究对象接触的物体作为参照物,假若没有摩擦力研究对象相对该参照物可能出现运动的方向。‎ V1‎ V2‎ f 图4‎ V θ 例3、 如图3所示,质量为m的物体放在水平放置的钢板C上,与钢板的动摩擦因素为μ。由于受到相对于地面静止的光滑导槽A、B的控制,物体只能沿水平导槽运动。现使钢板以速度V1向右匀速运动,同时用力F拉动物体(方向沿导槽方向)使物体以速度V2沿导槽匀速运动,求拉力F大小。 ‎ ‎ 分析与解:物体相对钢板具有向左的速度分量V1和侧向的速度分量V2,故相对钢板的合速度V的方向如图4所示,滑动摩擦力的方向与V的方向相反。根据平衡条件可得:‎ ‎ F=fcosθ=μmg 从上式可以看出:钢板的速度V1越大,拉力F越小。‎ 问题3:弄清弹力有无的判断方法和弹力方向的判定方法。‎ 图5‎ G N1‎ N2‎ 直接接触的物体间由于发生弹性形变而产生的力叫弹力。弹力产生的条件是“接触且有弹性形变”。若物体间虽然有接触但无拉伸或挤压,则无弹力产生。在许多情况下由于物体的形变很小,难于观察到,因而判断弹力的产生要用“反证法 ”,即由已知运动状态及有关条件,利用平衡条件或牛顿运动定律进行逆向分析推理。‎ 例如,要判断图5中静止在光滑水平面上的球是否受到斜面对它的弹力作用,可先假设有弹力N2存在,则此球在水平方向所受合力不为零,必加速运动,与所给静止状态矛盾,说明此球与斜面间虽接触,但并不挤压,故不存在弹力N2。‎ θ 图6‎ 例4、如图6所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,下列关于杆对球的作用力F的判断中,正确的是:‎ A.小车静止时,F=mgsinθ,方向沿杆向上。‎ B.小车静止时,F=mgcosθ,方向垂直杆向上。‎ C.小车向右以加速度a运动时,一定有F=ma/sinθ.‎ F α a mg 图7‎ D.小车向左以加速度a运动时,,方向斜向左上方,与竖直方向的夹角为α=arctan(a/g).‎ 分析与解:小车静止时,由物体的平衡条件知杆对球的作用力方向竖直向上,且大小等于球的重力mg.‎ ma mg F α 图8‎ 小车向右以加速度a运动,设小球受杆的作用力方向与竖直方向的夹角为α,如图7所示。根据牛顿第二定律有:Fsinα=ma, Fcosα=mg.,两式相除得:tanα=a/g.‎ 只有当球的加速度a=g.tanθ时,杆对球的作用力才沿杆的方向,此时才有F=ma/sinθ.小车向左以加速度a运动,根据牛顿第二定律知小球所受重力mg和杆对球的作用力F的合力大小为ma,方向水平向左。根据力的合成知三力构成图8所示的矢量三角形,,方向斜向左上方,与竖直方向的夹角为:α=arctan(a/g).‎ 问题4:弄清合力大小的范围的确定方法。‎ 有n个力F1、F2、F3、……Fn,它们合力的最大值是它们的方向相同时的合力,即Fmax=.而它们的最小值要分下列两种情况讨论:‎ ‎(1)、若n个力F1、F2、F3、……Fn中的最大力Fm大于 ‎,则它们合力的最小值是(Fm-)。‎ ‎(2)若n个力F1、F2、F3、……Fn中的最大力Fm小于,则它们合力的最小值是0。‎ 例5、四个共点力的大小分别为2N、3N、4N、6N,它们的合力最大值为 ,它们的合力最小值为 。‎ ‎ 分析与解:它们的合力最大值Fmax=(2+3+4+6)N=15N.因为Fm=6N<(2+3+4)N,所以它们的合力最小值为0。‎ 例6、四个共点力的大小分别为2N、3N、4N、12N,它们的合力最大值为 ,它们的合力最小值为 。‎ ‎ 分析与解:它们的合力最大值Fmax=(2+3+4+12)N=21N,因为Fm=12N>(2+3+4)N,所以它们的合力最小值为(12-2-3-4)N=3N。‎ 问题5:弄清力的分解的不唯一性及力的分解的唯一性条件。‎ 将一个已知力F进行分解,其解是不唯一的。要得到唯一的解,必须另外考虑唯一性条件。常见的唯一性条件有:‎ F F2‎ F1的方向 图9‎ ‎1.已知两个不平行分力的方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。‎ ‎2已知一个分力的大小和方向,可以唯一的作出力的平行四边形,对力F进行分解,其解是唯一的。‎ 力的分解有两解的条件:‎ ‎1.已知一个分力F1的方向和另一个分力F2的大小,由图9可知: ‎ F F1‎ F2‎ F1,‎ F2,‎ 图10‎ 当F2=Fsin时,分解是唯一的。‎ 当FsinF时,分解是唯一的。‎ ‎2.已知两个不平行分力的大小。如图10所示,分别以F的始端、末端为圆心,以F1、F2为半径作圆,两圆有两个交点,所以F分解为F1、F2有两种情况。存在极值的几种情况。‎ ‎(1)已知合力F和一个分力F1的方向,另一个分力F2存在最小值。‎ 图11‎ O F θ O,‎ ‎(2)已知合力F的方向和一个分力F1,另一个分力F2存在最小值。‎ 例7、如图11所示,物体静止于光滑的水平面上,力F作用于物体O点,现要使合力沿着OO,方向,那 么,必须同时再加一个力F,。这个力的最小值是:‎ A、Fcos, B、Fsinθ,‎ C、Ftanθ, D、Fcotθ 分析与解:由图11可知,F,的最小值是Fsinθ,即B正确。‎ θ 图12‎ 问题6:弄清利用力的合成与分解求力的两种思路。‎ 利用力的合成与分解能解决三力平衡的问题,具体求解时有两种思路:一是将某力沿另两力的反方向进行分解,将三力转化为四力,构成两对平衡力。二是某二力进行合成,将三力转化为二力,构成一对平衡力。‎ N1‎ N2,‎ θ 图13‎ N2‎ N1,‎ mg 例8、如图12所示,在倾角为θ的斜面上,放一质量为m的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少?‎ 求解思路一:小球受到重力mg、斜面的支持力N1、竖直木板的支持力N2的作用。将重力mg沿N1、N2反方向进行分解,分解为N1,、N2,,如图13所示。由平衡条件得N1= N1,=mg/cosθ,‎ N2= N2,=mgtanθ。‎ N1‎ θ 图14‎ N2‎ mg F 根据牛顿第三定律得球对挡板的压力和球对斜面的压力分别mgtanθ、mg/cosθ。注意不少初学者总习惯将重力沿平行于斜面的方向和垂直于斜面方向进行分解,求得球对斜面的压力为mgcosθ。‎ ‎ 求解思路二:小球受到重力mg、斜面的支持力N1、竖直木板的支持力N2的作用。将N1、N2进行合成,其合力F与重力mg是一对平衡力。如图14所示。N1= mg/cosθ,N2= mgtanθ。‎ 根据牛顿第三定律得球对挡板的压力和球对斜面的压力分别mgtanθ、mg/cosθ。‎ F R 图15‎ 问题七:弄清三力平衡中的“形异质同”问题 有些题看似不同,但确有相同的求解方法,实质是一样的,将这些题放在一起比较有利于提高同学们分析问题、解决问题的能力,能达到举一反三的目的。‎ 例9、如图15所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F缓慢拉动细绳时,小球所受支持力为N,则N,F的变化情况是:‎ A、都变大; B、N不变,F变小;‎ C、都变小; D、N变小, F不变。‎ 图16‎ F A B 例10、如图16所示,绳与杆均轻质,承受弹力的最大值一定,A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),B端吊一重物。现施拉力F将B缓慢上拉(均未断),在AB杆达到竖直前 A、绳子越来越容易断,‎ B、绳子越来越不容易断,‎ C、AB杆越来越容易断,‎ D、AB杆越来越不容易断。‎ A B P Q 图17‎ θ 例11、如图17所示竖直绝缘墙壁上的Q处有一固定 的质点A,Q正上方的P点用丝线悬挂另一质点B, A、B两质点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A、B两质点的带电量逐渐减小。在电荷漏完之前悬线对悬点P的拉力大小: ‎ A、保持不变; B、先变大后变小;‎ ‎ C、逐渐减小; D、逐渐增大。‎ BB A Q 图18‎ O P mg N F 分析与解:例9、例10、例11三题看似完全没有联系的三道题,但通过受力分析发现,这三道题物理实质是相同的,即都是三力平衡问题,都要应用相似三角形知识求解。只要能认真分析解答例9,就能完成例10、例11,从而达到举一反三的目的。‎ ‎ 在例中对小球进行受力分析如图18所示,显然ΔAOP与ΔPBQ相似。 由相似三角形性质有:(设OA=H,OP=R,AB=L) ‎ ‎ ‎ ‎ 因为mg、H、R都是定值,所以当L减小时,N不变,F减小。B正确。同理可知例10、例11的答案分别为B和A 问题八:弄清动态平衡问题的求解方法。‎ A B O C G 图19‎ 根据平衡条件并结合力的合成或分解的方法,把三个平衡力转化成三角形的三条边,然后通过这个三角形求解各力的大小及变化。‎ 例12、如图19所示,保持不变,将B点向上移,则BO绳的拉力将:‎ ‎ A. 逐渐减小 B. 逐渐增大 ‎ C. 先减小后增大 D. 先增大后减小 ‎ 分析与解:结点O在三个力作用下平衡,受力如图20甲所示,根据平衡条件可知,这三个力必构成一个闭合的三角形,如图20乙所示,由题意知,OC绳的拉力大小和方向都不变,OA绳的拉力方向不变,只有OB绳的拉力大小和方向都在变化,变化情况如图20丙所示,则只有当时,OB绳的拉力最小,故C选项正确。‎ F1‎ F3‎ F2‎ 甲 F3‎ F2‎ F1‎ 乙 F3‎ F2‎ F1‎ 丙 图20‎ 问题九:弄清整体法和隔离法的区别和联系。‎ 当系统有多个物体时,选取研究对象一般先整体考虑,若不能解答问题时,再隔离考虑。‎ 图21‎ 例13、如图21所示,三角形劈块放在粗糙的水平面上,劈块上放一个质量为m的物块,物块和劈块均处于静止状态,则粗糙水平面对三角形劈块:‎ ‎ A.有摩擦力作用,方向向左;‎ ‎ B.有摩擦力作用,方向向右;‎ ‎ C.没有摩擦力作用;‎ ‎ D.条件不足,无法判定.‎ A B θ 图22‎ ‎ 分析与解:此题用“整体法”分析.因为物块和劈块均处于静止状态,因此把物块和劈块看作是一个整体,由于劈块对地面无相对运动趋势,故没有摩擦力存在.(试讨论当物块加速下滑和加速上滑时地面与劈块之间的摩擦力情况?)‎ ‎(M+m)g f F N 图23‎ 例14、如图22所示,质量为M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面倾角为θ。质量为m的光滑球放在三棱柱和光滑竖直墙壁之间,A和B都处于静止状态,求地面对三棱柱支持力和摩擦力各为多少?‎ 分析与解:选取A和B整体为研究对象,它受到重力(M+m)g,地面支持力N,墙壁的弹力F和地面的摩擦力f的作用(如图23所示)而处于平衡状态。根据平衡条件有:‎ N-(M+m)g=0,F=f,可得N=(M+m)g mg N F θ 图24‎ 再以B为研究对象,它受到重力mg,三棱柱对它的支持力NB,墙壁对它的弹力F的作用(如图24所示)。而处于平衡状态,根据平衡条件有:‎ NB.cosθ=mg, NB.sinθ=F,解得F=mgtanθ.‎ 所以f=F=mgtanθ.‎ 问题十:弄清研究平衡物体的临界问题的求解方法。‎ 物理系统由于某些原因而发生突变时所处的状态,叫临界状态。临界状态也可理解为“恰好出现”和“恰好不出现”某种现象的状态。平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。‎ 例15、(2004年江苏高考试题)如图25所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。‎ m m O C θ θ R 图25‎ ‎(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图25).在—两个小圆环间绳子的中点C 处,挂上一个质量M=m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M.设绳子与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离.‎ ‎(2)若不挂重物M.小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态? ‎ m m O C θ θ R 图26‎ N T T T mg α α ‎ 分析与解:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为,由机械能守恒定律得:‎ 解得 ,(另解h=0舍去)‎ ‎(2)系统处于平衡状态时,两小环的可能位置为:‎ a.两小环同时位于大圆环的底端.‎ b.两小环同时位于大圆环的顶端.‎ c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端.‎ A B C F θ θ 图27‎ d.除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧角的位置上(如图26所示).对于重物,受绳子拉力与重力作用,有:‎ ‎ 对于小圆环,受到三个力的作用,水平绳子的拉力、竖直绳子的拉力、大圆环的支持力.两绳子的拉力沿大圆环切向的分力大小相等,方向相反 ‎ ‎ ‎ 得,而,所以 。‎ G F2‎ F1‎ F x y θ θ 图28‎ 例16、如图27所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成θ=600的拉力F,若要使两绳都能伸直,求拉力F的大小范围。‎ 分析与解:作出A受力图如图28所示,由平衡条件有:‎ F.cosθ-F2-F1cosθ=0,‎ ‎ Fsinθ+F1sinθ-mg=0‎ 要使两绳都能绷直,则有:F1‎ 由以上各式可解得F的取值范围为:。‎ 问题十一:弄清研究平衡物体的极值问题的两种求解方法。‎ 在研究平衡问题中某些物理量变化时出现最大值或最小值的现象称为极值问题。求解极值问题有两种方法:‎ 方法1:解析法。根据物体的平衡条件列方程,在解方程时采用数学知识求极值。通常用到数学知识有二次函数极值、讨论分式极值、三角函数极值以及几何法求极值等。‎ 方法2:图解法。根据物体平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据图进行动态分析,确定最大值和最小值。‎ G F FN Ff x y α 图29‎ 例17、重量为G的木块与水平地面间的动摩擦因数为μ,一人欲用最小的作用力F使木块做匀速运动,则此最小作用力的大小和方向应如何?‎ 分析与解:木块在运动过程中受摩擦力作用,要减小摩擦力,应使作用力F斜向上,设当F斜向上与水平方向的夹角为α时,F的值最小。木块受力分析如图29所示,由平衡条件知:‎ ‎ Fcosα-μFN=0, Fsinα+FN-G=0‎ 解上述二式得:。‎ 令tanφ=μ,则,‎ 可得:‎ 可见当时,F有最小值,即。‎ G 图30‎ F FN Ff α α G F1‎ φ F 用图解法分析:由于Ff=μFN,故不论FN如何改变,Ff与FN的合力F1的方向都不会发生改变,如图30所示,合力F1与竖直方向的夹角一定为,可见F1、F和G三力平衡,应构成一个封闭三角形,当改变F与水平方向夹角时,F和F1的大小都会发生改变,且F与F1方向垂直时F的值最小。由几何关系知:。‎ 问题十二:弄清力的平衡知识在实际生活中的运用。‎ 例18、电梯修理员或牵引专家常常需要监测金属绳中的张力,但不能到绳的自由端去直接测量.某公司制造出一种能测量绳中张力的仪器,工作原理如图31‎ 所示,将相距为L的两根固定支柱A、B(图中小圆框表示支柱的横截面)垂直于金属绳水平放置,在AB的中点用一可动支柱C向上推动金属绳,使绳在垂直于AB的方向竖直向上发生一个偏移量,这时仪器测得绳对支柱C竖直向下的作用力为F.‎ ‎(1)试用L、、F表示这时绳中的张力T.‎ ‎(2)如果偏移量,作用力F=400NL=250,计算绳中张力的大小 图31‎ 图32‎ 分析与解:(1)设c′点受两边绳的张力为T1和T2,的夹角为θ,如图32所示。依对称性有:T1=T2=T 由力的合成有 : F=2Tsinθ ‎ ‎ 根据几何关系有 sinθ= ‎ ‎ 联立上述二式解得 T= ,因d<
查看更多