- 2021-05-13 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2016全国2卷高考文科数学试卷及答案
2016年普通高等学校招生全统一考试 文科数学 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分 第Ⅰ卷 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) 已知集合,,则 (A) (B) (C) (D) (2) 设复数满足,则 (A) (B) (C) (D) (3) 函数的部分图像如图所示,则 (A) (B) (C) (D) (4) 体积为的正方体的顶点都在同一球面上,则该球面的表面积为 (A) (B) (C) (D) (5) 设为抛物线:的焦点,曲线与交于点,轴,则 (A) (B) (C) (D) (6) 圆的圆心到直线的距离为,则 (A) (B) (C) (D) (7) 右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A)20π (B)24π (C)28π (D)32π 否 是 输入 输出 开始 结束 输入 (1) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A) (B) (C) (D) (2) 中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的 (A)7 (B)12 (C)17 (D)34 (3) 下列函数中,其定义域和值域分别与函数的定义域和值域相同的是 (A) (B) (C) (D) (4) 函数的最大值为 (A)4 (B)5 (C)6 (D)7 (5) 已知函数满足,若函数与图像的交点为,则 (A) (B) (C) (D) 第Ⅱ卷 本卷包括必考题和选考题两部分。第(13)~(21)题为必考题,每个试题都必须作答。第(22)~(24)题为选考题,考生根据要求作答。 二、填空题:本题共4小题,每小题5分。 (6) 已知向量a,b,且a∥b,则 . (7) 若满足约束条件则的最小值为 . (1) 的内角的对边分别为,若,则 . (2) 有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤。 (3) (本小题满分12分) 等差数列中,且,. (Ⅰ)求的通项公式; (Ⅱ)记,求数列的前10项和,其中表示不超过的最大整数,如,. (4) (本小题满分12分) 某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下: 上年度出险次数 保 费 随机调查了设该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 概 数 (Ⅰ)记为事件:“一续保人本年度的保费不高于基本保费”.求的估计值; (Ⅱ)记为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求的估计值; (Ⅲ)求续保人本年度平均保费的估计值. (1) (本小题满分12分) 如图,菱形的对角线与交于点,点分别在上,,交于点.将沿折到的位置. (Ⅰ)证明:; (Ⅱ)若,,,,求五棱锥的体积. (2) (本小题满分12分) 已知函数. (Ⅰ)当时,求曲线在处的切线方程; (Ⅱ)若当时,,求的取值范围. (3) (本小题满分12分) 已知是椭圆:的左顶点,斜率为的直线交于两点,点在上,. (Ⅰ)当时,求的面积; (Ⅱ)当时,证明:. 请考生在第(22)~(24)题中任选一题作答,如果多做,则按所做的第一题计分。 (4) (本小题满分10分)选修4-1:几何证明选讲 如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为. (Ⅰ)证明:四点共圆; (Ⅱ)若,为的中点,求四边形的面积. (1) (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系中,圆的方程为. (Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程; (Ⅱ)直线的参数方程是(为参数),与交于两点,,求的斜率. (2) (本小题满分10分)选修4-5:不等式选讲 已知函数,为不等式的解集. (Ⅰ)求; (Ⅱ)证明:当时,. 2016年全国卷Ⅱ高考数学(文科)答案 一. 选择题 (1)D (2)C (3) A ( 4) A (5) D ( 6) A (7) C (8) B (9) C (10) D (11) B (12) B 二.填空题 (13) (14) (15) (16)1和3 三、解答题 (17)(本小题满分12分) (Ⅰ)设数列的公差为d,由题意有,解得, 所以的通项公式为. (Ⅱ)由(Ⅰ)知, 当n=1,2,3时,; 当n=4,5时,; 当n=6,7,8时,; 当n=9,10时,, 所以数列的前10项和为. (18)(本小题满分12分) (Ⅰ)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为, 故P(A)的估计值为0.55. (Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为, 故P(B)的估计值为0.3. (Ⅲ)由题所求分布列为: 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率 0.30 0.25 0.15 0.15 0.10 0.05 调查200名续保人的平均保费为 , 因此,续保人本年度平均保费估计值为1.1925a. (19)(本小题满分12分) (I)由已知得, 又由得,故 由此得,所以. (II)由得 由得 所以 于是故 由(I)知,又, 所以平面于是 又由,所以,平面 又由得 五边形的面积 所以五棱锥体积 (20)(本小题满分12分) (I)的定义域为.当时, ,曲线在处的切线方程为 (II)当时,等价于 令,则 , (i)当,时,,故在上单调递增,因此; (ii)当时,令得 , 由和得,故当时,,在单调递减,因此. 综上,的取值范围是 (21)(本小题满分12分) (Ⅰ)设,则由题意知. 由已知及椭圆的对称性知,直线的倾斜角为, 又,因此直线的方程为. 将代入得, 解得或,所以. 因此的面积. (II)将直线的方程代入得 . 由得,故. 由题设,直线的方程为,故同理可得. 由得,即. 设,则是的零点,, 所以在单调递增,又, 因此在有唯一的零点,且零点在内,所以. (22)(本小题满分10分) (I)因为,所以 则有 所以由此可得 由此所以四点共圆. (II)由四点共圆,知,连结, 由为斜边的中点,知,故 因此四边形的面积是面积的2倍,即 (23)(本小题满分10分) (I)由可得的极坐标方程 (II)在(I)中建立的极坐标系中,直线的极坐标方程为 由所对应的极径分别为将的极坐标方程代入的极坐标方程得 于是 由得, 所以的斜率为或. (24)(本小题满分10分) (I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,. 试题解析:(I) 当时,由得解得; 当时,; 当时,由得解得. 所以的解集. (II)由(I)知,当时,,从而 , 因此 To conquer our fears, we must go past them. To fear is natural; to go past them is heroic. Fear is a normal part of life, symbolizing that there are new, extraordinary things to come across and face. To be able to see these things before they happen is a sign of wisdom. Fear is nothing out of the ordinary. To admit that we are fearing is to prove that we value our life. And men should pay attention to the call of fears. To truly be a leader or someone who is heroic and brave, we should focus on getting past these fears. And it is frightful for people to go through life ignoring fears, because they may often forget their heart and step into life without responsibility.查看更多