- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考立体几何知识点总结二
立体几何知识点总结(二) 一.点、直线、平面之间的关系 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (4)、垂直于同一平面的两直线平行。 (5) 平行四边形两组对边平行,三角形中位线平行底边,,,,,, 2、线线垂直的判断: (1)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 (2)相交直线两直线可组成三角形利用勾股定理证垂直。 (3)一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断: (1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (2)、两个平面平行,其中一个平面内的直线必平行于另一个平面。 4、线面垂直的判断: (1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 (3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 5、面面平行的判断: (1)一个平面内的两条相交直线分别平行于另一个平面, 这两个平面平行: 线面平行面面平行 (2)垂直于同一条直线的两个平面平行。 6、面面垂直的判断: (1)一个平面经过另一个平面的垂线,这两个平面互相垂直。 7,体积的求法 (1)三棱锥换底换高 (2)其他图形根据情况适用公式或分割成几个图形 8、距离的求法: ①直接法:直接确定点到平面的垂线段长 ②转移法:转化为另一点到该平面的距离 ③体积法:利用三棱锥体积公式。 二 ,三角形的五心定理 重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对 边中点距离的2倍。 外心定理:三角形的三边的垂直平分线交于一点。 垂心定理:三角形的三条高交于一点。 内心定理:三角形的三内角平分线交于一点。 旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点。 练习题 .(2013年高考浙江卷(文))设m.n是两条不同的直线,α.β是两个不同的平面, ( ) A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥β C.若m∥n,m⊥α,则n⊥α D.若m∥α,α⊥β,则m⊥β .(2013年高考广东卷(文))设为直线,是两个不同的平面,下列命题中正确的是 ( ) A.若,,则 B.若,,则 C.若,,则 D.若,,则 3.【2012高考浙江文5】 设是直线,a,β是两个不同的平面( ) A. 若∥a,∥β,则a∥β B. 若∥a,⊥β,则a⊥β C. 若a⊥β,⊥a,则⊥β D. 若a⊥β, ∥a,则⊥β 4.【2012高考四川文6】下列命题正确的是( ) A、若两条直线和同一个平面所成的角相等,则这两条直线平行 B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D、若两个平面都垂直于第三个平面,则这两个平面平行 5(2013年辽宁)如图, (I)求证: (II)设 6.(2013年高考北京卷(文))如图,在四棱锥中,,,,平面底面,,和分别是和的中点,求证: (1)底面; (2)平面; (3)平面平面 7.(2013年高考安徽(文))如图,四棱锥的底面是边长为2的菱形,.已知 . (Ⅰ)证明: (Ⅱ)若为的中点,求三菱锥的体积. 8.(2013年高考课标Ⅱ卷(文))如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点. (1) 证明: BC1//平面A1CD; (2) 设AA1= AC=CB=2,AB=2,求三棱锥C一A1DE的体积. 9(2013年高考四川卷(文))如图,在三棱柱中,侧棱底面,,,分别是线段的中点,是线段上异于端点的点. (Ⅰ)在平面内,试作出过点与平面平行的直线,说明理由,并证明直线平面; (Ⅱ)设(Ⅰ)中的直线交于点,求三棱锥的体积. 10.(2013年高考江西卷(文))如图,直四棱柱ABCD – A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3 (1) 证明:BE⊥平面BB1C1C; (2) 求点B1 到平面EA1C1 的距离 11.(2013年高考重庆卷(文))四棱锥中,⊥底面,, , .zhangwlx (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积. 12.(2013年高考广东卷(文))如图4,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中. (1) 证明://平面; (2) 证明:平面; (3) 当时,求三棱锥的体积. 13.【2012高考陕西文18】直三棱柱ABC- A1B1C1中,AB=A A1 ,= (Ⅰ)证明; (Ⅱ)已知AB=2,BC=,求三棱锥 的体积 14.(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O为底面中心, A1O⊥平面ABCD, . (Ⅰ) 证明: A1BD // 平面CD1B1; (Ⅱ) 求三棱柱ABD-A1B1D1的体积. 15(2013年高考福建卷(文))如图,在四棱锥中,,,,,,,. (1)当正视图方向与向量的方向相同时,画出四棱锥的正视图.(要求标出尺寸,并画出演算过程); (2)若为的中点,求证:; (3)求三棱锥的体积.查看更多