- 2021-05-13 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考全国卷理科数学试题及答案
2003年普通高等学校招生全国统一考试(全国卷) 数 学(理工农医类) 注意事项: 1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式: 三角函数的积化和差公式: 正棱台、圆台的侧面积公式 其中、分别表示 上、下底面周长,表示斜高或母线长. 球体的体积公式: ,其中R 表示球的半径. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷(选择题共60分) 一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知,0),,则 ( ) (A) (B) (C) (D) 2.圆锥曲线的准线方程是 ( ) (A) (B) (C) (D) 3.设函数 ,若,则的取值范围是 ( ) (A)(,1) (B)(,) (C)(,)(0,) (D)(,)(1,) 4.函数的最大值为 ( ) (A) (B) (C) (D)2 5.已知圆C:()及直线:,当直线被C截得的弦长为时,则 ( ) (A) (B) (C) (D) 6.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( ) (A) (B) (C) (D) 7.已知方程的四个根组成一个首项为的的等差数列,则 ( ) (A)1 (B) (C) (D) 8.已知双曲线中心在原点且一个焦点为F(,0),直线与其相交于M、N两点,MN中点的横坐标为,则此双曲线的方程是 ( ) (A) (B) (C) (D) 9.函数,的反函数 ( ) (A) ,1] (B) ,1] (C) ,1] (D) ,1] 10.已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点沿与AB的夹角的方向射到BC上的点后,依次反射到CD、DA和AB上的点、和(入射角等于反射角),设的坐标为(,0),若,则tg的取值范围是 ( ) (A)(,1) (B)(,) (C)(,) (D)(,) 11. ( ) (A)3 (B) (C) (D)6 12.一个四面体的所有棱长都为,四个顶点在同一球面上,则些球的表面积为( ) (A) (B) (C) (D) 2003年普通高等学校招生全国统一考试(全国卷) 数 学(理工农医类) 第Ⅱ卷(非选择题共90分) 二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上 13.的展开式中系数是 14.使成立的的取值范围是 2 1 5 3 4 15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种(以数字作答) P M N l P N M l N l P M l M N P N l P M 16.下列5个正方体图形中,是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出面MNP的图形的序号是 (写出所有符合要求的图形序号) ① ② ③ ④ ⑤ 三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分) 已知复数的辐角为,且是和的等比中项,求 D E K B C1 A1 B1 A F C G 18.(本小题满分12分) 如图,在直三棱柱中,底面是等腰直角三角形,,侧棱,D、E分别是与的中点,点E在平面ABD上的射影是△ABD的重心G (I) 求与平面ABD所成角的大小(结果用反三角函数值表示) (II) 求点到平面AED的距离 19.(本小题满分12分) 已知,设 P:函数在R上单调递减 Q:不等式的解集为R 如果P和Q有且仅有一个正确,求的取值范围 O 北 东O y 线 岸 O x O r(t) P 海 20.(本小题满分12分) 在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南)方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分) O P A G D F E C B x y 已知常数,在矩形ABCD中,,,O为AB的中点,点E、F、G分别在BC、CD、DA上移动,且,P为GE与OF的交点(如图),问是否存在两个定点,使P到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分) (I)设是集合 且}中所有的数从小到大排列成的数列,即,,,,,,… 将数列各项按照上小下大,左小右大的原则写成如下的三角形数表: 3 5 6 9 10 12 — — — — ………… ⑴写出这个三角形数表的第四行、第五行各数; ⑵求 (II)(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分) 设是集合,且中所有的数从小到大排列成的数列,已知,求. 2003年普通高等学校招生全国统一考试(全国卷) 数学(理工农医类)答案 一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分. 1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13. 14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设,则复数由题设 18.(Ⅰ)解:连结BG,则BG是BE在ABD的射影,即∠EBG是A1B与平面ABD所成的角. 设F为AB中点,连结EF、FC, (Ⅱ)解: 19.解:函数在R上单调递减 不等式 20.解:如图建立坐标系以O为原点,正东方向为x轴正向. 在时刻:(1)台风中心P()的坐标为 此时台风侵袭的区域是 其中若在t时刻城市O受到台风的侵袭,则有 即 答:12小时后该城市开始受到台风的侵袭. 21.根据题设条件,首先求出点P坐标满足的方程,据此再判断是否存在的两定点,使得点P到两点距离的和为定值. 按题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)设 由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak) 直线OF的方程为:① 直线GE的方程为:② 从①,②消去参数k,得点P(x,y)坐标满足方程 整理得 当时,点P的轨迹为圆弧,所以不存在符合题意的两点. 当时,点P轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长 当时,点P到椭圆两个焦点(的距离之和为定值 当时,点P 到椭圆两个焦点(0, 的距离之和为定值2. 22.(本小题满分12分,附加题4分) (Ⅰ)解:用(t,s)表示,下表的规律为 3((0,1)=) 5(0,2) 6(1,2) 9(0,3) 10(1,3) 12(2,3) — — — — ………… (i)第四行17(0,4) 18(1,4) 20(2,4) 24(3,4) 第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5) (i i)解法一:因为100=(1+2+3+4+……+13)+9,所以(8,14)==16640 解法二:设,只须确定正整数 数列中小于的项构成的子集为 其元素个数为 满足等式的最大整数为14,所以取 因为100- (Ⅱ)解: 令 因 现在求M的元素个数: 其元素个数为: 某元素个数为 某元素个数为 另法:规定(r,t,s),=(3,7,10) 则= (0,1,2) 依次为 (0,1,3) (0,2,3) (1,2,3) (0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) ………… (0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) (0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… +4查看更多