- 2021-05-13 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考新课标1理科数学试题及答案
2013年普通高等学校招生全国统一考试(新课标Ⅰ卷) 理 科 数 学 第Ⅰ卷 一、选择题:(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合,则( ) A. B. C. D. 2.若复数满足(3-4i)z=|4+3i|,则z的虚部为( ). A. B. C. D. 3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到 该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 4.已知双曲线C:的离心率为,则C的渐近线方程为( ) A. B. C. D. 5.执行下面的程序框图,如果输入的,则输出的s属于( ) A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5] 6.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ) A. B. C. D. 7.设等差数列的前n项和为,若,则( ) A.3 B.4 C.5 D.6 8.某几何体的三视图如图所示,则该几何体的体积为( ) A. B. C. D. 9.设m为正整数,展开式的二项式系数的最大值为,展开式的二项式系数的最大值为.若,则( ) A.5 B.6 C.7 D.8 10.已知椭圆E:的右焦点为,过点的直线交于A,B两点.若AB的中点坐标为,则E的方程为( ) A. B. C. D. 11.已知函数若,则的取值范围是( ) A. B. C. D. 12.设的三边长分别为,的面积为若,,则( ) A.为递减数列 B.为递增数列 C.为递增数列,为递减数列 D.为递减数列,为递增数列 第Ⅱ卷 本卷包括必考题和选考题两部分. 第13题~第21题为必考题,每个试题考生必须做答. 第22题~第24题为选考题,考生根据要求做答. 二、填空题:(本大题共4小题,每小题5分,共20分.) 13. 已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b·c=0,则t=______. 14.若数列的前项和,则的通项公式是_______. 15.设当时,函数取得最大值,则__________. 16.若函数的图像关于直线对称,则的最大值为__________. 三、解答题:(解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)如图,在中,,,为内一点,. (1)若,求; (2)若,求. 18.(本小题满分12分)如图,三棱柱中,. (1)证明:; (2)若平面⊥平面,,求直线与平面所成角的正弦值. 19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验. 假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 20.(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线. (1)求的方程; (2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求. 21.(本小题满分12分)设函数.若曲线和曲线都过点,且在点处有相同的切线. (1)求的值; (2)若时,,求的取值范围. 请考生在第22、23题中任选择一题作答,如果多做,则按所做的第一部分,做答时请写清题号. 22.(本小题10分)【选修4-4;坐标系与参数方程】 已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)把的参数方程化为极坐标方程; (2)求与交点的极坐标. 23.(本小题10分)【选修4-5;不等式选讲】 已知函数. (1)当时,求不等式的解集; (2)设,且当时,,求的取值范围. 2013年普通高等学校夏季招生全国统一考试数学理工农医类 (全国卷I新课标) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:B 解析:∵x(x-2)>0,∴x<0或x>2. ∴集合A与B可用图象表示为: 由图象可以看出A∪B=R,故选B. 2. 答案:D 解析:∵(3-4i)z=|4+3i|, ∴. 故z的虚部为,选D. 3. 答案:C 解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样. 4. 答案:C 解析:∵,∴. ∴a2=4b2,. ∴渐近线方程为. 5. 答案:A 解析:若t∈[-1,1),则执行s=3t,故s∈[-3,3). 若t∈[1,3],则执行s=4t-t2,其对称轴为t=2. 故当t=2时,s取得最大值4.当t=1或3时,s取得最小值3,则s∈[3,4]. 综上可知,输出的s∈[-3,4].故选A. 6. 答案:A 解析:设球半径为R,由题可知R,R-2,正方体棱长一半可构成直角三角形,即△OBA为直角三角形,如图. BC=2,BA=4,OB=R-2,OA=R, 由R2=(R-2)2+42,得R=5, 所以球的体积为(cm3),故选A. 7. 答案:C 解析:∵Sm-1=-2,Sm=0,Sm+1=3, ∴am=Sm-Sm-1=0-(-2)=2,am+1=Sm+1-Sm=3-0=3. ∴d=am+1-am=3-2=1. ∵Sm=ma1+×1=0,∴. 又∵am+1=a1+m×1=3,∴. ∴m=5.故选C. 8. 答案:A 解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r=2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr2×4×+4×2×2=8π+16.故选A. 9. 答案:B 解析:由题意可知,a=,b=, 又∵13a=7b,∴, 即.解得m=6.故选B. 10. 答案:D 解析:设A(x1,y1),B(x2,y2),∵A,B在椭圆上, ∴ ①-②,得 , 即, ∵AB的中点为(1,-1),∴y1+y2=-2,x1+x2=2, 而=kAB=,∴. 又∵a2-b2=9,∴a2=18,b2=9. ∴椭圆E的方程为.故选D. 11. 答案:D 解析:由y=|f(x)|的图象知: ①当x>0时,y=ax只有a≤0时,才能满足|f(x)|≥ax,可排除B,C. ②当x≤0时,y=|f(x)|=|-x2+2x|=x2-2x. 故由|f(x)|≥ax得x2-2x≥ax. 当x=0时,不等式为0≥0成立. 当x<0时,不等式等价于x-2≤a. ∵x-2<-2,∴a≥-2. 综上可知:a∈[-2,0]. 12. 答案:B 第Ⅱ卷 本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.答案:2 解析:∵c=ta+(1-t)b, ∴b·c=ta·b+(1-t)|b|2. 又∵|a|=|b|=1,且a与b夹角为60°,b⊥c, ∴0=t|a||b|cos 60°+(1-t), 0=+1-t. ∴t=2. 14.答案:(-2)n-1 解析:∵,① ∴当n≥2时,.② ①-②,得, 即=-2. ∵a1=S1=, ∴a1=1. ∴{an}是以1为首项,-2为公比的等比数列,an=(-2)n-1. 15.答案: 解析:f(x)=sin x-2cos x =, 令cos α=,sin α=, 则f(x)=sin(α+x), 当x=2kπ+-α(k∈Z)时,sin(α+x)有最大值1,f(x)有最大值, 即θ=2kπ+-α(k∈Z), 所以cos θ===sin α=. 16.答案:16 解析:∵函数f(x)的图像关于直线x=-2对称, ∴f(x)满足f(0)=f(-4),f(-1)=f(-3), 即 解得 ∴f(x)=-x4-8x3-14x2+8x+15. 由f′(x)=-4x3-24x2-28x+8=0, 得x1=-2-,x2=-2,x3=-2+. 易知,f(x)在(-∞,-2-)上为增函数,在(-2-,-2)上为减函数,在(-2,-2+)上为增函数,在(-2+,+∞)上为减函数. ∴f(-2-)=[1-(-2-)2][(-2-)2+8(-2-)+15] =(-8-)(8-) =80-64=16. f(-2)=[1-(-2)2][(-2)2+8×(-2)+15] =-3(4-16+15) =-9. f(-2+)=[1-(-2+)2][(-2+)2+8(-2+)+15] =(-8+)(8+) =80-64=16. 故f(x)的最大值为16. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17. 解:(1)由已知得∠PBC=60°,所以∠PBA=30°. 在△PBA中,由余弦定理得PA2=. 故PA=. (2)设∠PBA=α,由已知得PB=sin α. 在△PBA中,由正弦定理得, 化简得cos α=4sin α. 所以tan α=,即tan∠PBA=. 18. (1)证明:取AB的中点O,连结OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°, 故△AA1B为等边三角形, 所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C平面OA1C,故AB⊥A1C. (2)解:由(1)知OC⊥AB,OA1⊥AB. 又平面ABC⊥平面AA1B1B,交线为AB, 所以OC⊥平面AA1B1B, 故OA,OA1,OC两两相互垂直. 以O为坐标原点,的方向为x轴的正方向,||为单位长,建立如图所示的空间直角坐标系O- xyz. 由题设知A(1,0,0),A1(0,,0),C(0,0,),B(-1,0,0). 则=(1,0,),==(-1,,0),=(0,,). 设n=(x,y,z)是平面BB1C1C的法向量, 则即可取n=(,1,-1). 故cos〈n,〉==. 所以A1C与平面BB1C1C所成角的正弦值为. 19. 解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以 P(A)=P(A1B1)+P(A2B2) =P(A1)P(B1|A1)+P(A2)P(B2|A2) =. (2)X可能的取值为400,500,800,并且 P(X=400)=,P(X=500)=,P(X=800)=. 所以X的分布列为 X 400 500 800 P EX==506.25. 20. 解:由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3. 设圆P的圆心为P(x,y),半径为R. (1)因为圆P与圆M外切并且与圆N内切, 所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4. 由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为(x≠-2). (2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2, 所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2. 所以当圆P的半径最长时,其方程为(x-2)2+y2=4. 若l的倾斜角为90°,则l与y轴重合,可得|AB|=. 若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(-4,0),所以可设l:y=k(x+4). 由l与圆M相切得, 解得k=. 当k=时,将代入, 并整理得7x2+8x-8=0, 解得x1,2=. 所以|AB|=. 当时,由图形的对称性可知|AB|=. 综上,|AB|=或|AB|=. 21. 解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4. 而f′(x)=2x+a,g′(x)=ex(cx+d+c), 故b=2,d=2,a=4,d+c=4. 从而a=4,b=2,c=2,d=2. (2)由(1)知,f(x)=x2+4x+2,g(x)=2ex(x+1). 设函数F(x)=kg(x)-f(x)=2kex(x+1)-x2-4x-2, 则F′(x)=2kex(x+2)-2x-4=2(x+2)(kex-1). 由题设可得F(0)≥0,即k≥1. 令F′(x)=0得x1=-ln k,x2=-2. ①若1≤k<e2,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0.即F(x)在(-2,x1)单调递减,在(x1,+∞)单调递增.故F(x)在[-2,+∞)的最小值为F(x1). 而F(x1)=2x1+2--4x1-2=-x1(x1+2)≥0. 故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立. ②若k=e2,则F′(x)=2e2(x+2)(ex-e-2). 从而当x>-2时,F′(x)>0,即F(x)在(-2,+∞)单调递增. 而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立. ③若k>e2,则F(-2)=-2ke-2+2=-2e-2(k-e2)<0. 从而当x≥-2时,f(x)≤kg(x)不可能恒成立. 综上,k的取值范围是[1,e2]. 请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22. (1)证明:连结DE,交BC于点G. 由弦切角定理得,∠ABE=∠BCE. 而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE. 又因为DB⊥BE, 所以DE为直径,∠DCE=90°, 由勾股定理可得DB=DC. (2)解:由(1)知,∠CDE=∠BDE,DB=DC, 故DG是BC的中垂线,所以BG=. 设DE的中点为O,连结BO,则∠BOG=60°. 从而∠ABE=∠BCE=∠CBE=30°, 所以CF⊥BF,故Rt△BCF外接圆的半径等于. 23. 解:(1)将消去参数t,化为普通方程(x-4)2+(y-5)2=25, 即C1:x2+y2-8x-10y+16=0. 将代入x2+y2-8x-10y+16=0得 ρ2-8ρcos θ-10ρsin θ+16=0. 所以C1的极坐标方程为 ρ2-8ρcos θ-10ρsin θ+16=0. (2)C2的普通方程为x2+y2-2y=0. 由 解得或 所以C1与C2交点的极坐标分别为,. 24. 解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3, 则y= 其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0. 所以原不等式的解集是{x|0<x<2}. (2)当x∈时,f(x)=1+a. 不等式f(x)≤g(x)化为1+a≤x+3. 所以x≥a-2对x∈都成立. 故≥a-2,即. 从而a的取值范围是.查看更多