- 2021-05-13 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018全国一卷理科数学高考真题及答案
2018年普通高等学校招生全国统一考试 理科数学 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设,则 A. B. C. D. 2.已知集合,则 A. B. C. D. 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记为等差数列的前项和.若,,则 A. B. C. D. 5.设函数.若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 6.在中,为边上的中线,为的中点,则 A. B. C. D. 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为 A. B. C.3 D.2 8.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则= A.5 B.6 C.7 D.8 9.已知函数.若g(x)存在2个零点,则a的取值范围是 A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 11.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若为直角三角形,则|MN|= A. B.3 C. D.4 12.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.若,满足约束条件,则的最大值为_____________. 14.记为数列的前项和.若,则_____________. 15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案) 16.已知函数,则的最小值是_____________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:60分。 17.(12分) 在平面四边形中,,,,. (1)求; (2)若,求. 18.(12分) 如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且. (1)证明:平面平面; (2)求与平面所成角的正弦值. 19.(12分) 设椭圆的右焦点为,过的直线与交于两点,点的坐标为. (1)当与轴垂直时,求直线的方程; (2)设为坐标原点,证明:. 20.(12分) 某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为,求的最大值点. (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 21.(12分) 已知函数. (1)讨论的单调性; (2)若存在两个极值点,证明:. (二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修4—4:坐标系与参数方程](10分) 在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为. (1)求的直角坐标方程; (2)若与有且仅有三个公共点,求的方程. 23.[选修4—5:不等式选讲](10分) 已知. (1)当时,求不等式的解集; (2)若时不等式成立,求的取值范围. 参考答案: 1 2 3 4 5 6 7 8 9 10 11 12 C B A B D A B D C A B A 13.6 14. 15.16 16. 17.(12分) 解:(1)在中,由正弦定理得. 由题设知,,所以. 由题设知,,所以. (2)由题设及(1)知,. 在中,由余弦定理得 . 所以. 18.(12分) 解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF. 又平面ABFD,所以平面PEF⊥平面ABFD. (2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD. 以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz. 由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF. 可得. 则为平面ABFD的法向量. 设DP与平面ABFD所成角为,则. 所以DP与平面ABFD所成角的正弦值为. 19.(12分) 解:(1)由已知得,l的方程为x=1. 由已知可得,点A的坐标为或. 所以AM的方程为或. (2)当l与x轴重合时,. 当l与x轴垂直时,OM为AB的垂直平分线,所以. 当l与x轴不重合也不垂直时,设l的方程为,, 则,直线MA,MB的斜率之和为. 由得 . 将代入得 . 所以,. 则. 从而,故MA,MB的倾斜角互补,所以. 综上,. 20.(12分) 解:(1)20件产品中恰有2件不合格品的概率为.因此 . 令,得.当时,;当时,. 所以的最大值点为. (2)由(1)知,. (i)令表示余下的180件产品中的不合格品件数,依题意知,,即. 所以. (ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于,故应该对余下的产品作检验. 21.(12分) 解:(1)的定义域为,. (i)若,则,当且仅当,时,所以在单调递减. (ii)若,令得,或. 当时,; 当时,.所以在单调递减,在单调递增. (2)由(1)知,存在两个极值点当且仅当. 由于的两个极值点满足,所以,不妨设,则.由于 , 所以等价于. 设函数,由(1)知,在单调递减,又,从而当时,. 所以,即. 22.[选修4—4:坐标系与参数方程](10分) 解:(1)由,得的直角坐标方程为. (2)由(1)知是圆心为,半径为的圆由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与 有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;当时,与没有公共点. 综上,所求的方程为. 23.[选修4—5:不等式选讲](10分) 解:(1)当时,,即 故不等式的解集为. (2)当时成立等价于当时成立. 若,则当时; 若,的解集为,所以,故. 综上,的取值范围为.查看更多