- 2021-05-13 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考联考君之名校考题冲击波 模块七 错位相减法求和大联考自主命题文档
练习题 1、已知{}是等差数列,其前项和为,{}是等比数列,且=,,. (Ⅰ)求数列{}与{}的通项公式; (Ⅱ)记,,证明。 2、 已知{}是等差数列,其前项和为,{}是等比数列,且=,,. (Ⅰ)求数列{}与{}的通项公式; (Ⅱ)记,,证明:. 3、 等比数列{}的前n项和为, 已知对任意的点,均在函数且均为常数)的图像上. w.w.w.k.s.5.u.c.o.m (1)求的值; (2)当时,记 ,求数列的前项和 答案: 1、解:(1)设等差数列的公差为,等比数列的公比为, 由=,得。 由条件,得方程组 ,解得。 (Ⅱ)证明:由(1)得, ①; 由②-①得, 2、解:(1)设等差数列的公差为,等比数列的公比为, 由=,得。 由条件,得方程组 ,解得。 (Ⅱ)证明:由(1)得, ①;[ 由②-①得, 3、因为对任意的,点,均在函数且均为常数)的图像上. 所以得,当时,, w.w.w.k.s.5.u.c.o.m 当时,, 又因为{}为等比数列, 所以, 公比为, 所以 (2)当b=2时,, 则 两式相减,得 所以查看更多