- 2021-05-13 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学一轮复习学案人教版A版97 抛物线答案
§9.7 抛物线 1.抛物线的标准方程、类型及其几何性质 (): 标准方程 图形 焦点 准线 范围 对称轴 轴 轴 顶点 (0,0) 离心率 2.抛物线的焦半径、焦点弦 ①的焦半径;的焦半径; ② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p. ③ AB为抛物线的焦点弦,则 ,,= 1.答案 ; 2.答案 4; 3.答案 y2=8x; 4.答案 4; 5.答案 2 例1 解 将x=3代入抛物线方程y2=2x,得y=±. ∵>2,∴A在抛物线内部. 设抛物线上点P到准线l:x=-的距离为d,由定义知|PA|+|PF|=|PA|+d, 当PA⊥l时,|PA|+d最小,最小值为,即|PA|+|PF|的最小值为, 此时P点纵坐标为2,代入y2=2x,得x=2,∴点P坐标为(2,2). 例2解 ①若抛物线开口方向向下,设抛物线方程为x2=-2py(p>0),这时准线方程为y=, 由抛物线定义知-(-3)=5,解得p=4, ∴抛物线方程为x2=-8y, 这时将点A(m,-3)代入方程,得m=±2. ②若抛物线开口方向向左或向右,可设抛物线方程为y2=2ax (a≠0), 从p=|a|知准线方程可统一成x=-的形式,于是从题设有, 解此方程组可得四组解,,,. ∴y2=2x,m=;y2=-2x,m=-;y2=18x,m=;y2=-18x,m=-. 例3(1)证明 由题意设A,B,x1<x2, M. 由x2=2py得y=,则y′=,所以kMA=,kMB=. 2分 因此,直线MA的方程为y+2p=(x-x0),直线MB的方程为y+2p=(x-x0). 所以,+2 p = (x1-x0), ①+2 p =(x2-x0). ② 5分 由①、②得=,因此,x0=,即2x0=. 所以A、M、B三点的横坐标成等差数列. 8分 (2)解 由(1)知,当x0=2时,将其代入①、②,并整理得:x-4x1-4p2=0,x-4x2-4 p 2=0, 所以,x1、x2是方程x2-4x-4 p 2=0的两根, 10分因此,x1+x2=4,x1x2=-4 p 2, 又kAB===,所以kAB=. 12分 由弦长公式得:|AB|==. 又|AB|=4,所以p=1或p=2,因此所求抛物线方程为x2=2y或x2=4y. 16分 1.答案 2.解 设抛物线的方程为y2=2 p x(p>0),其准线为x=-.设A(x1,y1),B(x2,y2), ∵|AF|+|BF|=8,∴x1++x2+=8,即x1+x2=8-p. ∵Q(6,0)在线段AB的中垂线上,∴|QA|=|QB|.即(x1-6)2+y12=(x2-6)2+y22, 又y12=2px1,y22=2px2,∴(x1-x2)(x1+x2-12+2p)=0.∵AB与x轴不垂直,∴x1≠x2, 故x1+x2-12+2p=8- p-12+2 p=0, 即p=4.从而抛物线的方程为y2=8x. 3.解 (1)由题意可得直线l的方程为y=x+, ① 过原点垂直于l的直线方程为y=-2x. ② 解①②得x=-. ∵抛物线的顶点关于直线l的对称点在该抛物线的准线上, ∴-=-×2, p=2.∴抛物线C的方程为y2=4x. (2)设A(x1,y1),B(x2,y2),N(x,y),由题意知y=y1. 由·+ p 2=0,得x1x2+y1y2+4=0, 又y12=4x1,y22=4x2,解得y1y2=-8, ③ 直线ON:y=x,即y=x. ④ 由③、④及y=y1得点N的轨迹方程为x=-2(y≠0). 1.答案x2=8y; 2.答案;3.答案; 4.答案相等; 5.答案-; 6.答案6; 7.答案3+2; 8.答案 9.解 因为一直角边的方程是y=2x, 所以另一直角边的方程是y=-x. 由,解得,或(舍去), 由,解得,或(舍去), ∴三角形的另两个顶点为和(8 p,-4p).∴=2. 解得p=,故所求抛物线的方程为y2=x. 10.解由题设知,抛物线以双曲线的右焦点为焦点,准线过双曲线的左焦点,∴p=2c.抛物线方程为y2=4cx. ∵抛物线过点,∴6=4c·.∴c=1,故抛物线方程为y2=4x. 又双曲线=1过点, ∴=1.又a2+b2=c2=1. ∴=1.∴a2=或a2=9(舍). ∴b2=,故双曲线方程为4x2-=1. 11.(1)解 由已知得2 p=8,∴=2,∴抛物线的焦点坐标为F(2,0),准线方程为x=-2. (2)证明 设A(xA,yA),B(xB,yB),直线AB的斜率为k=tan,则直线方程为y=k(x-2), 将此式代入y2=8x,得k2x2-4(k2+2)x+4k2=0,故xA+xB=, 记直线m与AB的交点为E(xE,yE),则xE==,yE=k(xE-2)=, 故直线m的方程为y-=-,令y=0,得点P的横坐标xP=+4, 故|FP|=xP-2==,∴|FP|-|FP|cos2=(1-cos2)==8,为定值. 12.解 (1)设M(x,y)为轨迹上任意一点,A(0,b),Q(a,0)(a≥0), 则=(x,y-b),=(a-x,-y), ∵=-,∴(x,y-b)=-(a-x,-y), ∴,从而.∴A,且=, =. ∵·=0,∴·=0,即3x-y2=0, ∴y2=4x,故M点的轨迹方程为y2=4x. (2)轨迹C的焦点为F(1,0),准线为l:x=-1,对称轴为x轴.设直线m的方程为y=k(x-1)(k≠0), 由ky2-4y-4k=0, 设G(x1,y1),H(x2,y2), 则由根与系数的关系得,y1y2=-4, 又由已知=(-1,y1),=, ∴(-1)×y2-y1×=-y2-·y2=-y2+y2=0, ∴∥,故O,E,H三点共线.查看更多