- 2021-05-13 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学按章节分类汇编人教A理选修23计数原理
2012年高考数学按章节分类汇编(人教A理:选修2-3) 第一章计数原理 一、选择题 .(2012陕西理)两人进行乒乓球比赛,先赢三局着获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A.10种 B.15种 C.20种 D.30种 .(2012山东理)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( ) A.232 B.252 C.472 D.484 .(2012辽宁理)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为 ( ) A.3×3! B.3×(3!)3 C.(3!)4 D.9! .(2012四川文)方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( ) A.28条 B.32条 C.36条 D.48条 .(2012大纲文)6名选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有 ( ) A.240种 B.360种 C.480种 D.720种 .(2012新课标理)将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动, 每个小组由名教师和名学生组成,不同的安排方案共有 ( ) A.种 B.种 C.种 D.种 .(2012浙江理)若从1,2,2,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有 ( ) A.60种 B.63种 C.65种 D.66种 .(2012四川理)方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( ) A.60条 B.62条 C.71条 D.80条 .(2012湖北理)设,且,若能被13整除,则 ( ) A.0 B.1 C.11 D.12 .(2012大纲理)将字母排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有 ( ) A.12种 B.18种 C. 24种 D.36种 .(2012北京理)从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A.24 B.18 C.12 D.6 .(2012安徽理)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品,已知6位同学之间共进行了13次交换,则收到份纪念品的同学人数为 ( ) A.或 B.或 C.或 D.或 .(2012安徽理)的展开式的常数项是 ( ) A. B. C. D. .(2012重庆文) 的展开式中的系数为 ( ) A.-270 B.-90 C.90 D.270 .(2012四川文)的展开式中的系数是 ( ) A.21 B.28 C.35 D.42 .(2012天津理)在的二项展开式中,的系数为 ( ) A.10 B. C.40 D. .(2012重庆理)的展开式中常数项为 ( ) A. B. C. D.105 .(2012四川理)的展开式中的系数是 ( ) A. B. C. D. 二、填空题 .(2012湖南文)某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______. .(2012福建文)某地图规划道路建设,考虑道路铺设方案,方案设计图中,点表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小.例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10. 现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________. .(2012浙江理)若将函数表示为 其中,,,,为实数,则=______________. .(2012重庆理)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为_______(用数字作答). .(2012重庆文)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其它三门艺术课各1节,则在课表上的相邻两节文化课之间至少间隔1节艺术课的概率为________(用数字作答). .(2012上海理)在的二项展开式中,常数项等于 _________ . .(2012上海春)若则___. .(2012陕西理)展开式中的系数为10, 则实数的值为__________. .(2012湖南理)( -)6的二项展开式中的常数项为_____.(用数字作答) .(2012广东理)(二项式定理)的展开式中的系数为_________.(用数字作答) .(2012福建理)的展开式中的系数等于8,则实数_________. .(2012大纲理)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为___________. .(2012上海文)在的二项展开式中,常数项等于 _________ . .(2012大纲文)的展开式中的系数为____. 参考答案 一、选择题 解析:先分类:3:0,3:1,3:2共计3类,当比分为3:0时,共有2种情形;当比分为3:1时,共有种情形;当比分为3:2时,共有种情形;总共有种,选D. 【解析】若没有红色卡,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有种,若2色相同,则有;若红色卡片有1张,则剩余2张若不同色,有种,如同色则有,所以共有,故选C. 【答案】C 【解析】此排列可分两步进行,先把三个家庭分别排列,每个家庭有种排法,三个家庭共有种排法;再把三个家庭进行全排列有种排法.因此不同的坐法种数为,答案为C 【点评】本题主要考查分步计数原理,以及分析问题、解决问题的能力,属于中档题. [答案]B [解析]方程变形得,若表示抛物线,则 所以,分b=-2,1,2,3四种情况: (1)若b=-2, ; (2)若b=2, 以上两种情况下有4条重复,故共有9+5=14条; 同理 若b=1,共有9条; 若b=3时,共有9条. 综上,共有14+9+9=32种 [点评]此题难度很大,若采用排列组合公式计算,很容易忽视重复的4条抛物线. 列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用. 答案C 【命题意图】本试题考查了排列问题的运用.利用特殊元素优先安排的原则分步完成得到结论. 【解析】甲先安排在除开始与结尾的位置还有个选择,剩余的元素与位置进行全排列有,故不同的演讲次序共有种. 【解析】选 甲地由名教师和名学生:种 【答案】D 【解析】 1,2,2,,9这9个整数中有5个奇数,4个偶数.要想同时取4个不同的数其和为偶数,则取法有:4个都是偶数:1种;2个偶数,2个奇数:种;4个都是奇数:种.∴不同的取法共有66种. [答案]B [解析]方程变形得,若表示抛物线,则 所以,分b=-3,-2,1,2,3五种情况: (1)若b=-3, ; (2)若b=3, 以上两种情况下有9条重复,故共有16+7=23条; 同理当b=-2,或2时,共有23条; 当b=1时,共有16条. 综上,共有23+23+16=62种 [点评]此题难度很大,若采用排列组合公式计算,很容易忽视重复的18条抛物线. 列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用. 考点分析:本题考察二项展开式的系数. 解析:由于51=52-1,, 又由于13|52,所以只需13|1+a,0≤a<13,所以a=12选D. 答案A 【命题意图】本试题考查了排列组合的用用. 【解析】利用分步计数原理,先填写最左上角的数,有3种,再填写右上角的数为2种,在填写第二行第一列的数有2种,一共有. 【答案】B 【解析】由于题目要求是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析3种选择,之后二位,有2种选择,最后百位2种选择,共12种;如果是第二种情况偶奇奇,分析同理,个位有3种选择,十位有2种选择,百位有一种选择,共6种,因此总共种,选B. 【考点定位】 本题是排列组合问题,属于传统的奇偶数排列的问题,解法不唯一,需先进行良好的分类之后再分步计算,该问题即可迎刃而解. 【解析】选 ①设仅有甲与乙,丙没交换纪念品,则收到份纪念品的同学人数为人 ②设仅有甲与乙,丙与丁没交换纪念品,则收到份纪念品的同学人数为人 【解析】选 第一个因式取,第二个因式取得: 第一个因式取,第二个因式取得: 展开式的常数项是 【答案】A 【解析】 【考点定位】本题考查二项展开式的通项公式解决二项展开式的特定问题. [答案]A [解析]二项式展开式的通项公式为=,令k=2,则 [点评]高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力. 【答案】D 【命题意图】本试题主要考查了二项式定理中的通项公式的运用,并借助于通项公式分析项的系数. 【解析】∵=,∴,即,∴的系数为. 【答案】B 【解析】,令,故展开式中的常数项为. 【考点定位】本题考查利用二项展开式的通项公式求展开公的常数项. [答案]D [解析]二项式展开式的通项公式为=,令k=2,则 [点评]:高考二项展开式问题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力. 二、填空题 . 【答案】7 【解析】用分数法计算知要最少实验次数为7. 【点评】本题考查优选法中的分数法,考查基本运算能力. 【答案】16 【解析】走线路消费最少,用16. 【考点定位】本题考查实际应用能力,创新能力,分析问题解决问题的能力. 【答案】10 【解析】法一:由等式两边对应项系数相等. 即:. 法二:对等式:两边连续对x求导三次得:,再运用赋值法,令得:,即. 【答案】 【解析】语文、数学、英语三门文化课间隔一节艺术课,排列有种排法,语文、数学、英语三门文化课相邻有种排法,语文、数学、英语三门文化课两门相邻有种排法.故所有的排法种数有在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为. 【考点定位】本题在计数时根据具体情况运用了插空法,做题时要注意体会这些方法的原理及其实际意义. 【答案】: 【解析】语文、数学、外语三门文化课两两不相邻排法可分为两步解决,先把其它三门艺术课排列有种排法,第二步把语文、数学、外语三门文化课插入那三个隔开的四个空中,有种排法,故所有的排法种数有种,在课表上相邻两节文化课之间至少间隔1节艺术课的概率为. 【考点定位】本题在计数时根据具体情况选用了插空法,做题时要注意体会这些方法的原理及其实际意义 [解析] 展开式通项,令6-2r=0,得r=3, 故常数项为. 解析:展开式中第项为,令,的系数为,解得. 【答案】-160 【解析】( -)6的展开式项公式是.由题意知,所以二项展开式中的常数项为. 【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 解析:20.的展开式通项为,令,解得,所以的展开式中的系数为. 【答案】2 【解析】时, 【考点定位】该题主要考查二项式定理、二项式定理的项与系数的关系,考查计算求解能力. 答案 【命题意图】本试题主要考查了二项式定理中通项公式的运用.利用二项式系数相等,确定了的值,然后进一步借助于通项公式,分析项的系数. 【解析】根据已知条件可知, 所以的展开式的通项为,令 所以所求系数为. [解析] 展开式通项,令6-2r=0,得r=3, 故常数项为. 答案 【命题意图】本试题主要考查了二项式定理展开式通项公式的运用.利用二项式系数相等,确定了的值,然后进一步借助通项公式,得到项的系数. 【解析】根据已知条件可得展开式的通项公式为,令,故所求的系数为. 查看更多