- 2021-05-13 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学大题突破训练文科
高考数学大题突破训练(五) 1、已知函数,R。 (1)求的值; (2)设,f(3)=,f(3+2)=.求sin( )的值 2、甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女. (I)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (II)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. 3、如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点. (Ⅰ)求证:DE∥平面BCP; (Ⅱ)求证:四边形DEFG为矩形; (Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由. 4、设是公比为正数的等比数列,,。 (Ⅰ)求的通项公式; (Ⅱ)设是首项为1,公差为2的等差数列,求数列的前项和。 5、设椭圆C: 过点(0,4),离心率为 (Ⅰ)求C的方程; (Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标。 6、已知函数,. (Ⅰ)设函数F(x)=18f(x)-x2[h(x)]2,求F(x)的单调区间与极值; (Ⅱ)设,解关于x的方程; (Ⅲ)设,证明: 高考数学大题突破训练(六) 1、已知等比数列中,,公比. (I)为的前n项和,证明: (II)设,求数列的通项公式. 2、本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为、;两小时以上且不超过三小时还车的概率分别为、;两人租车时间都不会超过四小时. (Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率. 3、设函数 (1)求的最小正周期; (II)若函数的图象按平移后得到函数的图象,求在上的最大值。 4、如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D. (Ⅰ)求证:PB1∥平面BDA1; (Ⅱ)求二面角A-A1D-B的平面角的余弦值; 5、已知函数,其中. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)当时,求的单调区间; (Ⅲ)证明:对任意的在区间内均存在零点. 6、已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为。 ⑴ 若与重合,求的焦点坐标; ⑵ 若,求的最大值与最小值; ⑶ 若的最小值为,求的取值范围。 高考数学大题突破训练(七) 1、在△中,内角的对边分别为,已知 (Ⅰ)求的值; (Ⅱ)的值. 2、已知公差不为0的等差数列的首项为,且,,成等比数列. (Ⅰ)求数列的通项公式; (Ⅱ)对,试比较与的大小. 3、某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中: (I)没有人申请A片区房源的概率; (II)每个片区的房源都有人申请的概率。 4、如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD. (I)证明:; (II)设PD=AD=1,求棱锥D-PBC的高. 5、已知函数(其中常数a,b∈R),是奇函数. (Ⅰ)求的表达式; (Ⅱ)讨论的单调性,并求在区间[1,2]上的最大值和最小值. 6、设椭圆的左、右焦点分别为F1,F2。点满足 (Ⅰ)求椭圆的离心率; (Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。 高考数学大题突破训练(八) 1、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S=(a2+b2-c2). (Ⅰ)求角C的大小; (Ⅱ)求sinA+sinB的最大值. 2、有编号为,,…的10个零件,测量其直径(单位:cm),得到下面数据: 其中直径在区间[1.48,1.52]内的零件为一等品。 (Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (Ⅱ)从一等品零件中,随机抽取2个. (ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率。 3、如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点. (Ⅰ)证明://平面; (Ⅱ)证明:平面; (Ⅲ)求直线与平面所成角的正切值. 4、设等差数列满足,。 (Ⅰ)求的通项公式; (Ⅱ)求的前项和及使得最大的序号的值。 5、已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围. 6、设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。 (Ⅰ)求 (Ⅱ)若直线的斜率为1,求b的值。 高考数学大题突破训练(五)参考答案 1、解:(1) ; (2) 故 2、解:(I)甲校两男教师分别用A、B表示,女教师用C表示; 乙校男教师用D表示,两女教师分别用E、F表示 从甲校和乙校报名的教师中各任选1名的所有可能的结果为: (A,D)(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F)共9种。 从中选出两名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F)共4种, 选出的两名教师性别相同的概率为 (II)从甲校和乙校报名的教师中任选2名的所有可能的结果为: (A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F), (C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种, 从中选出两名教师来自同一学校的结果有: (A,B),(A,C),(B,C),(D,E),(D,F),(E,F)共6种, 选出的两名教师来自同一学校的概率为 3、证明:(Ⅰ)因为D,E分别为AP,AC的中点, 所以DE//PC。 又因为DE平面BCP, 所以DE//平面BCP。 (Ⅱ)因为D,E,F,G分别为 AP,AC,BC,PB的中点, 所以DE//PC//FG,DG//AB//EF。 所以四边形DEFG为平行四边形, 又因为PC⊥AB, 所以DE⊥DG, 所以四边形DEFG为矩形。 (Ⅲ)存在点Q满足条件,理由如下: 连接DF,EG,设Q为EG的中点 由(Ⅱ)知,DF∩EG=Q,且QD=QE=QF=QG=EG. 分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN。 与(Ⅱ)同理,可证四边形MENG为矩形,其对角线点为EG的中点Q, 且QM=QN=EG, 所以Q为满足条件的点. 4、解:(I)设q为等比数列的公比,则由, 即,解得(舍去),因此 所以的通项为 (II) 5、解(Ⅰ)将(0,4)代入C的方程得 ∴b=4 又 得即, ∴a=5 ∴C的方程为 ( Ⅱ)过点且斜率为的直线方程为, 设直线与C的交点为A,B, 将直线方程代入C的方程,得, 即,解得,, AB的中点坐标, , 即中点为。 6、解:(Ⅰ), . 令,得(舍去). 当时.;当时,, 故当时,为增函数;当时,为减函数. 为的极大值点,且. (Ⅱ)方法一:原方程可化为, 即为,且 ①当时,,则,即, ,此时,∵, 此时方程仅有一解. ②当时,,由,得,, 若,则,方程有两解; 若时,则,方程有一解; 若或,原方程无解. 方法二:原方程可化为, 即, ①当时,原方程有一解; ②当时,原方程有二解; ③当时,原方程有一解; ④当或时,原方程无解. (Ⅲ)由已知得, . 设数列的前n项和为,且() 从而有,当时,. 又 . 即对任意时,有,又因为,所以. 则,故原不等式成立. 高考数学大题突破训练(六)参考答案 1、(Ⅰ)因为 所以 (Ⅱ) 所以的通项公式为 2、解:(Ⅰ)分别记甲、乙在三小时以上且不超过四小时还车为事件A、B,则 ,. 答:甲、乙在三小时以上且不超过四小时还车的概率分别为、. (Ⅱ)记甲、乙两人所付的租车费用之和小于6元为事件C,则 . 答:甲、乙两人所付的租车费用之和小于6元的概率为 3、解:(I) 故的最小正周期为 (II)依题意 当为增函数, 所以上的最大值为 4、(Ⅰ)连结AB1与BA1交于点O,连结OD, ∵C1D∥平面AA1,A1C1∥AP,∴AD=PD,又AO=B1O, ∴OD∥PB1,又ODÌ面BDA1,PB1Ë面BDA1, ∴PB1∥平面BDA1. (Ⅱ)过A作AE⊥DA1于点E,连结BE.∵BA⊥CA,BA⊥AA1,且AA1∩AC=A, ∴BA⊥平面AA1C1C.由三垂线定理可知BE⊥DA1. ∴∠BEA为二面角A-A1D-B的平面角. 在Rt△A1C1D中,, 又,∴. 在Rt△BAE中,,∴. 故二面角A-A1D-B的平面角的余弦值为. 5、(Ⅰ)解:当时, 所以曲线在点处的切线方程为 (Ⅱ)解:,令,解得 因为,以下分两种情况讨论: (1)若变化时,的变化情况如下表: + - + 所以,的单调递增区间是的单调递减区间是。 (2)若,当变化时,的变化情况如下表: + - + 所以,的单调递增区间是的单调递减区间是 (Ⅲ)证明:由(Ⅱ)可知,当时,在内的单调递减,在内单调递增,以下分两种情况讨论: (1)当时,在(0,1)内单调递减, 所以对任意在区间(0,1)内均存在零点。 (2)当时,在内单调递减,在内单调递增,若 所以内存在零点。 若 所以内存在零点。 所以,对任意在区间(0,1)内均存在零点。 综上,对任意在区间(0,1)内均存在零点。 6、解:⑴ ,椭圆方程为, ∴ 左、右焦点坐标为。 ⑵ ,椭圆方程为,设,则 ∴ 时; 时。 ⑶ 设动点,则 ∵ 当时,取最小值,且,∴ 且 解得。 高考数学大题突破训练(七)参考答案 1、(Ⅰ)解:由 所以 (Ⅱ)解:因为,所以 所以 2、(Ⅰ)解:设等差数列的公差为,由题意可知 即,从而 因为 故通项公式 (Ⅱ)解:记 所以 从而,当时,;当 3、解:这是等可能性事件的概率计算问题。 (I)解法一:所有可能的申请方式有34种,而“没有人申请A片区房源”的申请方式有24种。 记“没有人申请A片区房源”为事件A,则 解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验. 记“申请A片区房源”为事件A,则 由独立重复试验中事件A恰发生k次的概率计算公式知,没有人申请A片区房源的概率为 (II)所有可能的申请方式有34种,而“每个片区的房源都有人申请”的申请方式有 种. 记“每个片区的房源都有人申请”为事件B,从而有 4、(Ⅰ)因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD 又PD底面ABCD,可得BDPD 所以BD平面PAD. 故 PABD (Ⅱ)如图,作DEPB,垂足为E。已知PD底面ABCD,则PDBC。由(Ⅰ)知BDAD,又BC//AD,所以BCBD。 故BC平面PBD,BCDE。则DE平面PBC。 由题设知,PD=1,则BD=,PB=2, 根据BE·PB=PD·BD,得DE=,即棱锥D—PBC的高为 5、解:(Ⅰ)由题意得 因此是奇函数,所以有 从而 (Ⅱ)由(Ⅰ)知, 上是减函数;当从而在区间上是增函数。 由前面讨论知,而 因此 ,最小值为 6、(Ⅰ)解:设,因为, 所以,整理得(舍) 或 (Ⅱ)解:由(Ⅰ)知,可得椭圆方程为,直线FF2的方程为 A,B两点的坐标满足方程组消去并整理,得。解得,得方程组的解 不妨设,, 所以 于是 圆心到直线PF2的距离 因为,所以 整理得,得(舍),或 所以椭圆方程为 高考数学大题突破训练(八)参考答案 1、(Ⅰ)解:由题意可知 absinC=,2abcosC. 所以tanC=. 因为0查看更多
相关文章
- 当前文档收益归属上传用户