- 2021-05-13 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学高考试题——数学天津卷理
高考数学2009年普通高等学校招生全国统一考试(天津卷) 数学(理工农医类) 参考公式: 。如果事件A,B互相排斥,那么P(AUB)=P(A)+P(B)。 。棱柱的体积公式V=sh。其中S表示棱柱的底面积,h表示棱柱的高 一、 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。 (1) i是虚数单位,= (A)1+2i (B)-1-2i (C)1-2i (D)-1+2i (2)设变量x,y满足约束条件:.则目标函数z=2x+3y的最小值为 (A)6 (B)7 (C)8 (D)23 (3)命题“存在R,0”的否定是 (A)不存在R, >0 (B)存在R, 0 (C)对任意的R, 0 (D)对任意的R, >0 (4)设函数则 A在区间内均有零点。 B在区间内均无零点。 C在区间内有零点,在区间内无零点。 D在区间内无零点,在区间内有零点。 (5)阅读右图的程序框图,则输出的S= A 26 B 35 C 40 D 57 (6)设若的最小值为 A 8 B 4 C 1 D (7)已知函数的最小正周期为,为了得到函数 的图象,只要将的图象 A 向左平移个单位长度 B 向右平移个单位长度 C 向左平移个单位长度 D 向右平移个单位长度 (8)已知函数若则实数的取值范围是 A B C D (9).设抛物线=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,=2,则BCF与ACF的成面积之比= (A) (B) (C) (D) (10).0<b<1+a,若关于x 的不等式>的解集中的整数恰有3个,则 (A)-1<a<0 (B)0<a<1 (C)1<a<3 (D)3<a<6 二.填空题:(6小题,每题4分,共24分) (11)某学院的A,B,C三个专业共有1200名学生,为了调 查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取 一个容量为120的样本。已知该学院的A专业有380名学生, B专业有420名学生,则在该学院的C专业应抽取____名学生。 (12)如图是一个几何体的三视图,若它的体积是,则 a=_______ (13) 设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______ (14)若圆与圆(a>0)的公共弦的长为, 则a=___________ (15)在四边形ABCD中,==(1,1),,则四边形ABCD的面积是 (16)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数字作答) 三、解答题:本大题共6小题,共76分,解答应写出文字说明,证明过程或演算步骤。 (17)(本小题满分12分) 在⊿ABC中,BC=,AC=3,sinC=2sinA (I) 求AB的值: (II) 求sin的值 (18)(本小题满分12分) 在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求: (I) 取出的3件产品中一等品件数X的分布列和数学期望; (II) 取出的3件产品中一等品件数多于二等品件数的概率。 (19)(本小题满分12分) 如图,在五面体ABCDEF中,FA 平面ABCD, AD//BC//FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD (I) 求异面直线BF与DE所成的角的大小; (II) 证明平面AMD平面CDE; (III)求二面角A-CD-E的余弦值。 (20)(本小题满分12分) 已知函数其中 (1) 当时,求曲线处的切线的斜率; (2) 当时,求函数的单调区间与极值。 (21)(本小题满分14分) 以知椭圆的两个焦点分别为,过点的直线与椭圆相交与两点,且。 (1) 求椭圆的离心率; (2) 求直线AB的斜率; (3) 设点C与点A关于坐标原点对称,直线上有一点在的外接圆上,求的值 (22)(本小题满分14分) 已知等差数列{}的公差为d(d0),等比数列{}的公比为q(q>1)。设=+…..+ ,=-+…..+(-1 ,n (I) 若== 1,d=2,q=3,求 的值; (II) 若=1,证明(1-q)-(1+q)=,n; (Ⅲ) 若正数n满足2nq,设的两个不同的排列, , 证明。 2009年普通高等学校招生全国统一考试(天津卷) 数学(理工类)参考解答 一. 选择题:本题考查基本知识和基本运算。每小题5分,满分50分。 (1)D (2)B (3)D (4)D (5) C (6)B (7)A (8)C (9)A (10)C 二.填空题:本题考查基本知识和基本运算。每小题4分,满分24分。 (11) 40 (12) (13) (14) 1 (15) (16)324 三.解答题 (17)本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系、二倍角的正弦与余弦、两角差的正弦等基础知识,考查基本运算能力。满分12分。 (Ⅰ)解:在△ABC中,根据正弦定理, 于是AB= (Ⅱ)解:在△ABC中,根据余弦定理,得cosA= 于是 sinA= 从而sin2A=2sinAcosA=,cos2A=cos2A-sin2A= 所以 sin(2A-)=sin2Acos-cos2Asin= (18)本小题主要考查古典概型及计算公式、离散型随机变量的分布列和数学期望、互斥事件等基础知识,考查运用概率知识解决实际问题的能力。满分12分。 (Ⅰ)解:由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果数为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)= ,k=0,1,2,3. 所以随机变量X的分布列是 X 0 1 2 3 P X的数学期望EX= (Ⅱ)解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2,”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥,且A=A1∪A2∪A3而 P(A2)=P(X=2)= ,P(A3)=P(X=3)= , 所以取出的3件产品中一等品件数多于二等品件数的概率为 P(A)=P(A1)+P(A2)+P(A3)= ++= (19)本小题要考查异面直线所成的角、平面与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想像能力、运算能力和推理论证能力。满分12分. 方法一:(Ⅰ)解:由题设知,BF//CE,所以∠CED(或其补角)为异面直线BF与DE所成的角。设P为AD的中点,连结EP,PC。因为FEAP,所以FAEP,同理ABPC。又FA⊥平面ABCD,所以EP⊥平面ABCD。而PC,AD都在平面ABCD内,故EP⊥PC,EP⊥AD。由AB⊥AD,可得PC⊥AD设FA=a,则EP=PC=PD=a,CD=DE=EC=,故∠CED=60°。所以异面直线BF与DE所成的角的大小为60° (II)证明:因为 (III) 由(I)可得, 方法二:如图所示,建立空间直角坐标系, 点为坐标原点。设依题意得 (I) 所以异面直线与所成的角的大小为. (II)证明: , (III) 又由题设,平面的一个法向量为 (20)本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。满分12分。 (I)解: (II) 以下分两种情况讨论。 (1)>,则<.当变化时,的变化情况如下表: + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗ (2)<,则>,当变化时,的变化情况如下表: + 0 — 0 + ↗ 极大值 ↘ 极小值 ↗ (21)本小题主要考查椭圆的标准方程和几何性质、直线的方程、圆的方程等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力,满分14分 (I) 解:由//且,得,从而 整理,得,故离心率 (II) 解:由(I)得,所以椭圆的方程可写为 设直线AB的方程为,即. 由已知设,则它们的坐标满足方程组 消去y整理,得. 依题意, 而 ① ② 由题设知,点B为线段AE的中点,所以 ③ 联立①③解得, 将代入②中,解得. (III)解法一:由(II)可知 当时,得,由已知得. 线段的垂直平分线l的方程为直线l与x轴 的交点是外接圆的圆心,因此外接圆的方程为. 直线的方程为,于是点H(m,n)的坐标满足方程组 , 由解得故 当时,同理可得. 解法二:由(II)可知 当时,得,由已知得 由椭圆的对称性可知B,,C三点共线,因为点H(m,n)在的外接圆上, 且,所以四边形为等腰梯形. 由直线的方程为,知点H的坐标为. 因为,所以,解得m=c(舍),或. 则,所以. 当时同理可得 (22)本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。 (Ⅰ)解:由题设,可得 所以, (Ⅱ)证明:由题设可得则 ① ② ① 式减去②式,得 ① 式加上②式,得 ③ ② 式两边同乘q,得 所以, (Ⅲ)证明: 因为所以 (1) 若,取i=n (2) 若,取i满足且 由(1),(2)及题设知,且 ① 当时,得 即,…, 又所以 因此 ② 当同理可得,因此 综上,查看更多