- 2021-05-13 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
(新课标)天津市2020年高考数学二轮复习 专题能力训练18 直线与圆锥曲线 理
专题能力训练18 直线与圆锥曲线 一、能力突破训练 1.已知O为坐标原点,F是椭圆C:=1(a>b>0)的左焦点,A,B分别为C的左、右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BMw经过OE的中点,则C的离心率为 ( ) A. B. C. D. 2.已知双曲线=1(a>0,b>0)的离心率为,则抛物线x2=4y的焦点到双曲线的渐近线的距离是( ) A. B. C. D. 3.如果与抛物线y2=8x相切倾斜角为135°的直线l与x轴和y轴的交点分别是A和B,那么过A,B两点的最小圆截抛物线y2=8x的准线所得的弦长为( ) A.4 B.2 C.2 D. 4.(2018全国Ⅰ,理11)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|= ( ) A. B.3 C.2 D.4 5.平面直角坐标系xOy中,双曲线C1:=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为 . 6.(2018全国Ⅰ,理19)设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0). 14 (1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB. 7. 如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q. (1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值. 14 8.已知椭圆C:=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1. (1)求椭圆C的方程; (2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN|·|BM|为定值. 14 9.(2018全国Ⅱ,理19)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8. (1)求l的方程. (2)求过点A,B且与C的准线相切的圆的方程. 14 二、思维提升训练 10.(2018全国Ⅲ,理16)已知点M(-1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C交于A,B两点,若∠AMB=90°,则k= . 11.定长为3的线段AB的两个端点A,B分别在x轴、y轴上滑动,动点P满足=2. (1)求点P的轨迹曲线C的方程; (2)若过点(1,0)的直线与曲线C交于M,N两点,求的最大值. 12.设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E. (1)证明|EA|+|EB|为定值,并写出点E的轨迹方程; (2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围. 14 13.(2018全国Ⅲ,理20)已知斜率为k的直线l与椭圆C:=1交于A,B两点,线段AB的中点为M(1,m)(m>0). (1)证明:k<-; (2)设F为C的右焦点,P为C上一点,且=0.证明:||,||,||成等差数列,并求该数列的公差. 14 专题能力训练18 直线与圆锥曲线 一、能力突破训练 1.A 解析 由题意,不妨设直线l的方程为y=k(x+a),k>0,分别令x=-c与x=0,得|FM|=k(a-c),|OE|=ka. 设OE的中点为G, 由△OBG∽△FBM,得, 即,整理,得, 故椭圆的离心率e=,故选A. 2.B 解析 抛物线x2=4y的焦点为(0,1),双曲线=1(a>0,b>0)的离心率为,所以=2,双曲线的渐近线为y=±x=±2x,则抛物线x2=4y的焦点到双曲线的渐近线的距离是故选B. 3.C 解析 设直线l的方程为y=-x+b,联立直线与抛物线方程,消元得y2+8y-8b=0.因为直线与抛物线相切,所以Δ=82-4×(-8b)=0,解得b=-2,故直线l的方程为x+y+2=0,从而A(-2,0),B(0,-2).因此过A,B两点的最小圆即为以AB为直径的圆,其方程为(x+1)2+(y+1)2=2,而抛物线y2=8x的准线方程为x=-2,此时圆心(-1,-1)到准线的距离为1,故所截弦长为2=2. 4.B 解析 由条件知F(2,0),渐近线方程为y=±x,所以∠NOF=∠MOF=30°,∠MON=60°≠90°. 不妨设∠OMN=90°,则|MN|=|OM|. 又|OF|=2,在Rt△OMF中,|OM|=2cos 30°=,所以|MN|=3. 5 解析 双曲线的渐近线为y=±x.由得A 14 由得B ∵F为△OAB的垂心,∴kAF·kOB=-1. 即=-1,解得, ,即可得e= 6.解 (1)由已知得F(1,0),l的方程为x=1. 由已知可得,点A的坐标为 所以AM的方程为y=-x+或y=x- (2)当l与x轴重合时,∠OMA=∠OMB=0°, 当l与x轴垂直时,OM为AB的垂直平分线,所以∠OMA=∠OMB. 当l与x轴不重合也不垂直时,设l的方程为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2), 则x1<,x2<,直线MA,MB的斜率之和为kMA+kMB= 由y1=kx1-k,y2=kx2-k,得 kMA+kMB= 将y=k(x-1)代入+y2=1得(2k2+1)x2-4k2x+2k2-2=0, 所以x1+x2=,x1x2= 则2kx1x2-3k(x1+x2)+4k==0. 从而kMA+kMB=0,故MA,MB的倾斜角互补,所以∠OMA=∠OMB. 综上,∠OMA=∠OMB. 14 7.解 (1)设直线AP的斜率为k,k==x-, 因为-查看更多
相关文章
- 当前文档收益归属上传用户