高考解析几何

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考解析几何

如题(21)图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点。‎ ‎(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;‎ ‎(Ⅱ)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos‎2a为定值,并求此定值。‎ ‎(16)过双曲线的右焦点F作倾斜角为的直线,交双曲线于PQ两点,则|FP||FQ|的值为__________.‎ ‎(10)已知双曲线 的左、右焦点分别为F1、F2,P是准线上一点,且P F1⊥P F2,|P F1||P F2 |=4ab,则双曲线的离心率是 ‎ (A) (B) (C)2 (D)3‎ ‎(21)(本题15分)如图,直线y=kx+b与椭圆交于A、B两点,记△AOB的面积为S.‎ ‎ (I)求在k=0,0<b<1的条件下,S的最大值;‎ ‎ (Ⅱ)当|AB|=2,S=1时,求直线AB的方程.‎ 设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为.‎ ‎(Ⅰ)证明;‎ ‎(Ⅱ)求使得下述命题成立:设圆上任意点处的切线交椭圆于,两点,则.‎ 设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为.‎ ‎(Ⅰ)证明;‎ ‎(Ⅱ)设为椭圆上的两个动点,,过原点作直线的垂线,垂足为,求点的轨迹方程.‎ ‎(5)如果双曲线=1上一点P到双曲线右焦点的距离是2,那么点P到y轴的距离是 ‎(A) (B) (C) (D)‎ ‎(10)已知抛物线y-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于 A.3 B.4 C.3 D.4‎ ‎20)(本小题满分12分)设、分别是椭圆的左、右焦点.‎ ‎(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;‎ ‎(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.‎ ‎8、已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为 ‎21、已知半椭圆与半椭圆组成的曲线称为“果圆”,其中,是对应的焦点。‎ ‎(1)若三角形是边长为1的等边三角形,求“果圆”的方程;‎ ‎(2)若,求的取值范围;‎ ‎(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦。是否存在实数,使得斜率为的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有的值;若不存在,说明理由。‎ ‎9.已知双曲线C∶>0,b>0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是 ‎(A)a (B)b (C) (D)‎ 已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.‎ ‎(Ⅰ)求椭圆C的方程;‎ ‎(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.‎ ‎(13)设是坐标原点,是抛物线的焦点,是抛物线上的一点,与轴正向的夹角为,则为 .‎ 已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为.‎ ‎(Ⅰ)求椭圆的标准方程;‎ ‎(Ⅱ)若直线与椭圆相交于,两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.‎ 在直角坐标系中,以为圆心的圆与直线相切.‎ ‎(1)求圆的方程;‎ ‎(2)圆与轴相交于两点,圆内的动点使成等比数列,求的取值范围.‎ ‎11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )‎ A. B. C. D.‎ ‎12.设分别是双曲线的左、右焦点.若点在双曲线上,且,则( )‎ A. B. C. D.‎ ‎(4)已知双曲线的离心率为,焦点是,,则双曲线方程为(  )‎ A. B. C. D.‎ ‎(11)抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是(  )‎ A. B. C. D.‎ 已知椭圆的左、右焦点分别为,.过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为.‎ ‎(Ⅰ)设点的坐标为,证明:;‎ ‎(Ⅱ)求四边形的面积的最小值.‎ ‎13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为     .3‎ 在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.‎ ‎(I)求的取值范围;‎ ‎(II)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.‎ ‎11.设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为( )‎ A. B. C. D.‎ ‎14.设椭圆上一点到左准线的距离为10,是该椭圆的左焦点,若点满足,则= .‎ 已知正三角形的三个顶点都在抛物线上,其中为坐标原点,设圆是的内接圆(点为圆心)‎ ‎(I)求圆的方程;‎ ‎(II)设圆的方程为,过圆上任意一点分别作圆的两条切线,切点为,求的最大值和最小值.‎ ‎9.设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点(  )‎ A.必在圆内 B.必在圆上 C.必在圆外 D.以上三种情形都有可能 设动点到点和的距离分别为和,,且存在常数,使得.‎ ‎(1)证明:动点的轨迹为双曲线,并求出的方程;‎ ‎(2)过点作直线双曲线的右支于两点,试确定的范围,使,其中点为坐标原点.‎ ‎7.连接抛物线的焦点与点所得的线段与抛物线交于点,设点为坐标原点,则三角形的面积为(  )‎ A. B. C. D.‎ ‎12.设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点(  )‎ A.必在圆上 B.必在圆外 C.必在圆内 D.以上三种情形都有可能 设动点到点和的距离分别为和,,且存在常数,使得.‎ ‎(1)证明:动点的轨迹为双曲线,并求出的方程;‎ ‎(2)如图,过点的直线与双曲线的右支交于两点.问:是否存在,使 是以点为直角顶点的等腰直角三角形?若存在,求出的值;若不存在,说明理由.‎ ‎3.在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为 A. B. C. D.‎ ‎15.在平面直角坐标系中,已知顶点和,顶点在椭圆上,则    . ‎ ‎19、(本小题满分14分)如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线,分别与线段和直线交于,‎ ‎(1)若,求的值;(5分)‎ ‎(2)若为线段的中点,求证:为此抛物线的切线;(5分)‎ ‎(3)试问(2)的逆命题是否成立?说明理由。(4分)‎ ‎9.设分别是椭圆()的左、右焦点,若在其右准线上存在使线段的中垂线过点,则椭圆离心率的取值范围是( )‎ A. B. C. D.‎ 已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.‎ ‎(I)若动点满足(其中为坐标原点),求点的轨迹方程;‎ ‎(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.‎ ‎9.设分别是椭圆()的左、右焦点,是其右准线上纵坐标为(为半焦距)的点,且,则椭圆的离心率是( )‎ A. B. C. D.‎ 已知双曲线的右焦点为,过点的动直线与双曲线相交于两点,点的坐标是.‎ ‎(I)证明,为常数;‎ ‎(II)若动点满足(其中为坐标原点),求点的轨迹方程.‎ ‎7.双曲线的左准线为,左焦点和右焦点分别为和;抛物线的准线为,焦点为与的一个交点为,则等于( )‎ A. B. C. D.‎ ‎10.已知直线(是非零常数)与圆有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( )‎ A.60条 B.66条 C.72条 D.78条 在平面直角坐标系中,过定点作直线与抛物线()相交于两点.‎ ‎(I)若点是点关于坐标原点的对称点,求面积的最小值;‎ ‎(II)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程;若不存在,说明理由.(此题不要求在答题卡上画图)‎ A B x y N C O ‎12.过双曲线左焦点的直线交曲线的左支于两点,为其右焦点,则的值为______.‎ ‎11.在平面直角坐标系中,有一定点,若线段的垂直平分线过抛物线则该抛物线的方程是 .‎ ‎ 在平面直角坐标系中,已知圆心在第二象限、半径为的圆与直线相切于 坐标原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.‎ ‎ (1)求圆的方程;‎ ‎ (2)试探究圆上是否存在异于原点的点,使到椭圆右焦点的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.‎ ‎11.在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点P(2,4),则该抛物线的方程是 ‎ ‎ 在平面直角坐标系中,已知圆心在第二象限、半径为2/2的圆与直线相切于 坐标原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.‎ ‎ (1)求圆的方程;‎ ‎ (2)试探究圆上是否存在异于原点的点,使到椭圆右焦点F的距离等于线段的长.若存在,请求出点的坐标;若不存在,请说明理由.‎ ‎6.以双曲线的右焦点为圆心,且与其渐近线相切的圆的方程是( )‎ A. B.‎ C. D.‎ O y x ‎1‎ l F ‎20.(本小题满分12分)如图,已知点,‎ 直线,为平面上的动点,过作直线 的垂线,垂足为点,且.‎ ‎(Ⅰ)求动点的轨迹的方程;‎ ‎(Ⅱ)过点的直线交轨迹于两点,交直线于点,已知,,求的值;‎ ‎10.以双曲线的右焦点为圆心,且与其右准线相切的圆的方程是(  )‎ A. B.‎ C. D.‎ 如图,已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.‎ ‎(Ⅰ)求动点的轨迹的方程;‎ ‎(Ⅱ)过点的直线交轨迹于两点,交直线于点.‎ ‎(1)已知,,求的值;‎ ‎(2)求的最小值.‎ 矩形的两条对角线相交于点,边所在直线的方程为,点在边所在直线上.‎ ‎(I)求边所在直线的方程;‎ ‎(II)求矩形外接圆的方程;‎ ‎(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.‎ ‎4.椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是(  )‎ A. B. C. D.‎ 如图,矩形的两条对角线相交于点,‎ 边所在直线的方程为点在边所在直线上.‎ ‎(I)求边所在直线的方程;‎ ‎(II)求矩形外接圆的方程;‎ ‎(III)若动圆过点,且与矩形的外接圆外切,求动圆的圆心的轨迹方程.‎ ‎(9)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且△是等边三角形,则双曲线的离心率为 ‎ (A) (B) (C) (D)‎ ‎(14)如图,抛物线y=-x2+1与x轴的正半轴交于点A,将线段OA的n等分点从左至右依次记为P1,P2,…,Pn-1,过这些分点分别作x轴的垂线,与抛物线的交点依次为Q1,Q2,…,Qn-1,从而得到n-1个直角三角形△Q1OP1, △Q2P1P2,…, △Qn-1Pn-1Pn-1,当n→∞时,这些三角形的面积之和的极限为 . ‎ ‎(19) (本小题满分12分)‎ 如图,曲线G的方程为y2=2x(y≥0).以原点为圆心,以t(t >0)为半径的圆分别与曲线G和y轴的正半轴相交于点A与点B.直线AB与x轴相交于点C.‎ ‎(Ⅰ)求点A的横坐标a与点C的横坐标c的关系式;‎ ‎(Ⅱ)设曲线G上点D的横坐标为a+2,求证:‎ 直线CD的斜率为定值.‎ ‎(18)(本小题满分14分)‎ ‎   设F是抛物线G:x2=4y的焦点.‎ ‎   (Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:‎ ‎(Ⅱ)设A、B为势物线G上异于原点的两点,且满足,延长AF、BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.‎ ‎(22) (本小题满分12分)如图,中心在原点O的椭圆的右焦点为F(3,0),右准线l的方程为:x = 12。(1)求椭圆的方程;‎ ‎(2)在椭圆上任取三个不同点,使,证明 为定值,并求此定值。‎
查看更多

相关文章

您可能关注的文档