- 2021-05-13 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考复习几何探究性问题
几何探究题 1、如图1,图2,图3,在中,分别以为边,向外作正三角形,正四边形,正五边形,相交于点. ①如图1,求证:; ②探究:如图1, ; 如图2, ; 如图3, . (2)如图4,已知:是以为边向外所作正边形的一组邻边; 是以为边向外所作正边形的一组邻边.的延长相交于点. ①猜想:如图4, (用含的式子表示); ②根据图4证明你的猜想. 2、请阅读下列材料: 问题:如图1,在菱形和菱形中,点在同一条直线上,是线段的中点,连结.若,探究与的位置关系及的值. 小聪同学的思路是:延长交于点,构造全等三角形,经过推理使问题得到解决. D A B E F C P G 图1 D C G P A B E F 图2 请你参考小聪同学的思路,探究并解决下列问题: (1)写出上面问题中线段与的位置关系及的值; (2)将图1中的菱形绕点顺时针旋转,使菱形的对角线恰好与菱形的边在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明. (3)若图1中,将菱形绕点顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含的式子表示). 3、如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动. (1)求AD的长; (2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值; (3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由. (备用图) 4、已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:,请你探究:当点P分别在图(2)、图(3)中的位置时,又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论. 答:对图(2)的探究结论为____________________________________. 对图(3)的探究结论为_____________________________________. 5、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处. (1)直接写出点E、F的坐标; (2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 6、如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由. (3)在第(2)题图5中,连结、,且a=3,b=2,k=,求的值. 7、正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F。如图1,当点P与点O重合时,显然有DF=CF. ⑴如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E。 ①求证:DF=EF; ②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论; ⑵若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E。请完成图3并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明) O D C B A 图3 P 图2 O D C B A E F P F P(O) D C B A 图1 8、将一矩形纸片放在平面直角坐标系中,,,.动点从点出发以每秒1个单位长的速度沿向终点运动,运动秒时,动点从点出发以相等的速度沿向终点运动.当其中一点到达终点时,另一点也停止运动.设点的运动时间为(秒). 图1 O P A x B D C Q y (1)用含的代数式表示; (2)当时,如图1,将沿翻折,点恰好落在边上的点处,求点的坐标; 9、(1)探究新知:如图1,已知△ABC与△ABD的面积相等, 试判断AB与CD 的位置关系,并说明理由. (2)结论应用: ① 如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF. ② 若①中的其他条件不变,只改变点M,N 的位置如图3所示,请判断 MN与EF是否平行. x O y N M 图 2 E F x N x O y D M 图 3 N A B D C 图 1查看更多