- 2021-05-13 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学专题复习几何证明压轴题含答案解析
几何证明压轴题(中考) 1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2. (1) 求证:DC=BC; (2) E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论; (3) 在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值. [解析] (1)过A作DC的垂线AM交DC于M, 则AM=BC=2. 又tan∠ADC=2,所以.即DC=BC. (2)等腰三角形. 证明:因为. 所以,△DEC≌△BFC 所以,. 所以, 即△ECF是等腰直角三角形. (3)设,则,所以. 因为,又,所以. 所以 所以. 2、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G. (1)求证:△ADE≌△CBF; (2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论. [解析] (1)∵四边形ABCD是平行四边形, ∴∠1=∠C,AD=CB,AB=CD . ∵点E 、F分别是AB、CD的中点, ∴AE=AB ,CF=CD . ∴AE=CF ∴△ADE≌△CBF . (2)当四边形BEDF是菱形时, 四边形 AGBD是矩形. ∵四边形ABCD是平行四边形, ∴AD∥BC . ∵AG∥BD , ∴四边形 AGBD 是平行四边形. ∵四边形 BEDF 是菱形, ∴DE=BE . ∵AE=BE , ∴AE=BE=DE . ∴∠1=∠2,∠3=∠4. ∵∠1+∠2+∠3+∠4=180°, ∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°. ∴四边形AGBD是矩形 3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转. (1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想; 图13-1 A( G ) B( E ) C O D( F ) 图13-2 E A B D G F O M N C (2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 图13-3 A B D G E F O M N C [解析](1)BM=FN. 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴ ∠ABD =∠F =45°,OB = OF. 又∵∠BOM=∠FON, ∴ △OBM≌△OFN . ∴ BM=FN. (1) BM=FN仍然成立. (2) 证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形, ∴∠DBA=∠GFE=45°,OB=OF. ∴∠MBO=∠NFO=135°. 又∵∠MOB=∠NOF, ∴ △OBM≌△OFN . ∴ BM=FN. 4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。 (1)若,求CD的长; (2)若 ∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。 [解析] (1)因为AB是⊙O的直径,OD=5 所以∠ADB=90°,AB=10 在Rt△ABD中, 又,所以,所以 因为∠ADB=90°,AB⊥CD 所以 所以 所以 所以 (2)因为AB是⊙O的直径,AB⊥CD 所以 所以∠BAD=∠CDB,∠AOC=∠AOD 因为AO=DO,所以∠BAD=∠ADO 所以∠CDB=∠ADO 设∠ADO=4x,则∠CDB=4x 由∠ADO:∠EDO=4:1,则∠EDO=x 因为∠ADO+∠EDO+∠EDB=90° 所以 所以x=10° 所以∠AOD=180°-(∠OAD+∠ADO)=100° 所以∠AOC=∠AOD=100° 5、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G. (1)求证:点F是BD中点; (2)求证:CG是⊙O的切线; (3)若FB=FE=2,求⊙O的半径. [解析] (1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF ∴,∵HE=EC,∴BF=FD (2)方法一:连接CB、OC, ∵AB是直径,∴∠ACB=90°∵F是BD中点, ∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG是⊙O的切线---------6′ 方法二:可证明△OCF≌△OBF(参照方法一标准得分) (3)解:由FC=FB=FE得:∠FCE=∠FEC 可证得:FA=FG,且AB=BG 由切割线定理得:(2+FG)2=BG×AG=2BG2 在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 由、得:FG2-4FG-12=0 解之得:FG1=6,FG2=-2(舍去) ∴AB=BG= ∴⊙O半径为2 6、如图,已知O为原点,点A的坐标为(4,3), ⊙A的半径为2.过A作直线平行于轴,点P在直线上运动. (1)当点P在⊙O上时,请你直接写出它的坐标; (2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由. [解析] 解: ⑴点P的坐标是(2,3)或(6,3) ⑵作AC⊥OP,C为垂足. ∵∠ACP=∠OBP=,∠1=∠1 ∴△ACP∽△OBP ∴ 在中,,又AP=12-4=8, ∴ ∴AC=≈1.94 ∵1.94<2 ∴OP与⊙A相交. 7、如图,延长⊙O的半径OA到B,使OA=AB, DE是圆的一条切线,E是切点,过点B作DE的垂线, C A B D O E 垂足为点C. 求证:∠ACB=∠OAC. [解析] 证明:连结OE、AE,并过点A作AF⊥DE于点F, (3分) ∵DE是圆的一条切线,E是切点, ∴OE⊥DC, 又∵BC⊥DE, ∴OE∥AF∥BC. ∴∠1=∠ACB,∠2=∠3. ∵OA=OE, ∴∠4=∠3. ∴∠4=∠2. 又∵点A是OB的中点, ∴点F是EC的中点. ∴AE=AC. ∴∠1=∠2. ∴∠4=∠2=∠1. 即∠ACB=∠OAC. 8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为. ⑴求AO与BO的长; ⑵若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行. ①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米; ②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’= ,试求AA’的长. [解析] ⑴中,∠O=,∠α= ∴,∠OAB=,又AB=4米, ∴米. 米. -------------- (3分) ⑵设在中, 根据勾股定理: ∴ ------------- (5分) ∴ ∵ ∴ ∴ ------------- (7分) AC=2x= 即梯子顶端A沿NO下滑了米. ---- (8分) ⑶∵点P和点分别是的斜边AB与的斜边的中点 ∴, ------------- (9分) ∴------- (10分) ∴ ∴ ∵ ∴ ----------------------- (11分) ∴----- (12分) ∴米. -------- (13分)查看更多