2010中考数学试题分类汇编共28专题11二次函数

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2010中考数学试题分类汇编共28专题11二次函数

‎25.(2010湖南湘潭市)(本题满分10分)‎ 如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=‎10cm,BC=‎6cm,F点以‎2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以‎1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0MN成立的x的取值范围。‎ 解:(1)∠ABE=∠CBD=30° ‎ 在△ABE中,AB=6‎ BC=BE=‎ CD=BCtan30°=4‎ ‎∴OD=OC-CD=2‎ ‎∴B(,6) D(0,2)‎ 设BD所在直线的函数解析式是y=kx+b ‎ ∴ ‎ 所以BD所在直线的函数解析式是 ‎(2)∵EF=EA=ABtan30°= ∠FEG=180°-∠FEB-∠AEB=60°‎ ‎(2010红河自治州)22.(本小题满分11分)二次函数的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.‎ ‎ (1)画出经过两次平移后所得到的图像,并写出函数的解析式.‎ ‎ (2)求经过两次平移后的图像与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?‎ 解:画图如图所示:‎ 依题意得:‎ ‎ =‎ ‎ =‎ ‎∴平移后图像的解析式为:‎ ‎(2)当y=0时,=0‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎∴平移后的图像与x轴交与两点,坐标分别为(,0)和(,0)‎ 由图可知,当x<或x>时,二次函数的函数值大于0.‎ ‎(2010年镇江市)12.已知实数的最大值为 4 .‎ ‎(2010年镇江市)23.运算求解(本小题满分6分)‎ ‎ 已知二次函数的图象C1与x轴有且只有一个公共点.‎ ‎ (1)求C1的顶点坐标;‎ ‎ (2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(—3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;‎ ‎ (3)若的取值范围.‎ ‎(1) (1分)‎ 轴有且只有一个公共点,∴顶点的纵坐标为0.‎ ‎∴C1的顶点坐标为(—1,0) (2分)‎ ‎ (2)设C2的函数关系式为 把A(—3,0)代入上式得 ‎∴C2的函数关系式为 (3分)‎ ‎∵抛物线的对称轴为轴的一个交点为A(—3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0). (4分)‎ ‎ (3)当的增大而增大,‎ 当 (5分)‎ ‎(9题图)‎ ‎(2010遵义市)如图,两条抛物线、与分别经过点,且平行于轴的两条平行线围成的阴影部分的面积为 ‎ A.8  B.6  C.10  D.4 ‎ 答案:A ‎ (2010台州市)10.如图,点A,B的坐标分别为(1, 4)和(4, 4),抛物线的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为,则点D的横坐标最大值为(▲)‎ y x O ‎(第10题)‎ ‎ A.-3   B.‎1 C.5 D.8 ‎ 答案:D ‎(2010遵义市)(14分)如图,已知抛物线的顶点坐 ‎(27题图)‎ 标为Q,且与轴交于点C,与轴交于A、B两 点(点A在点B的右侧),点P是该抛物线上一动点,从点C 沿抛物线向点A运动(点P与A不重合),过点P作PD∥轴,‎ 交AC于点D.‎ ‎(1)求该抛物线的函数关系式;‎ ‎(2)当△ADP是直角三角形时,求点P的坐标;‎ ‎(3)在问题(2)的结论下,若点E在轴上,点F在抛物线上,‎ 问是否存在以A、P、E、F为顶点的平行四边形?若存在,‎ 求点F的坐标;若不存在,请说明理由.‎ ‎ 答案: 27.(14分)解:(1)(3分)‎ ‎∵抛物线的顶点为Q(2,-1)‎ ‎∴设 将C(0,3)代入上式,得 ‎∴, 即 ‎ ‎ ‎(2)(7分)分两种情况:‎ ‎ ①(3分)当点P1为直角顶点时,点P1与点B重合(如图)‎ ‎ 令=0, 得 解之得, ‎ ‎∵点A在点B的右边, ∴B(1,0), A(3,0)‎ ‎∴P1(1,0)‎ ‎②(4分)解:当点A为△APD2的直角顶点是(如图)‎ ‎∵OA=OC, ∠AOC=, ∴∠OAD2=‎ 当∠D2AP2=时, ∠OAP2=, ∴AO平分∠D2AP2‎ 又∵P2D2∥轴, ∴P2D2⊥AO, ∴P2、D2关于轴对称.‎ 设直线AC的函数关系式为 将A(3,0), C(0,3)代入上式得 ‎, ∴‎ ‎∴‎ ‎∵D2在上, P2在上,‎ ‎∴设D2(,), P2(,)‎ ‎∴()+()=0‎ ‎, ∴, (舍)‎ ‎∴当=2时, ‎ ‎==-1‎ ‎ ∴P2的坐标为P2(2,-1)(即为抛物线顶点)‎ ‎∴P点坐标为P1(1,0), P2(2,-1)‎ ‎ (3)(4分)解: 由题(2)知,当点P的坐标为P1(1,0)时,不能构成平行四边形 当点P的坐标为P2(2,-1)(即顶点Q)时,‎ 平移直线AP(如图)交轴于点E,交抛物线于点F.‎ 当AP=FE时,四边形PAFE是平行四边形 ‎∵P(2,-1), ∴可令F(,1)‎ ‎∴‎ 解之得: , ‎ ‎∴F点有两点,即F1(,1), F2(,1)‎ ‎(2010台州市)‎(第24题)‎ H 24.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点, HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.‎ ‎(1)求证:△DHQ∽△ABC;‎ ‎(2)求y关于x的函数解析式并求y的最大值;‎ ‎(3)当x为何值时,△HDE为等腰三角形?‎ ‎ ‎ ‎24.(14分)(1)∵A、D关于点Q成中心对称,HQ⊥AB,‎ ‎∴=90°,HD=HA,‎ ‎∴,…………………………………………………………………………‎ ‎3分 ‎(图1)‎ ‎(图2)‎ ‎∴△DHQ∽△ABC. ……………………………………………………………………1分 ‎(2)①如图1,当时, ‎ ED=,QH=,‎ 此时. …………………………………………3分 当时,最大值.‎ ‎②如图2,当时,‎ ED=,QH=,‎ 此时. …………………………………………2分 当时,最大值.‎ ‎∴y与x之间的函数解析式为 y的最大值是.……………………………………………………………………1分 ‎(3)①如图1,当时,‎ 若DE=DH,∵DH=AH=, DE=,‎ ‎∴=,.‎ 显然ED=EH,HD=HE不可能; ……………………………………………………1分 ‎②如图2,当时,‎ 若DE=DH,=,; …………………………………………1分 若HD=HE,此时点D,E分别与点B,A重合,; ………………………1分 若ED=EH,则△EDH∽△HDA,‎ ‎∴,,. ……………………………………1分 ‎∴当x的值为时,△HDE是等腰三角形.‎ ‎(其他解法相应给分)‎ 图7‎ ‎(玉溪市2010)15. 如图7是二次函数在平面直角坐标 系中的图象,根据图形判断 ① >0;② ++<0;‎ ③ 2-<0; 2+8>4中正确的是(填写序号)② 、④ .‎ ‎(玉溪市2010)23.如图10,在平面直角坐标系中,点A的坐标为(1,) ,△AOB的面积是.‎ ‎(1)求点B的坐标;‎ ‎(2)求过点A、O、B的抛物线的解析式;‎ x y A ‎0‎ B ‎(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的 坐标;若不存在,请说明理由; ‎ ‎ (4)在(2)中,轴下方的抛物线上是否存在一点P,‎ 过点P作轴的垂线,交直线AB于点D,线段OD 把△AOB分成两个三角形.使其中一个三角形面积 与图10‎ 四边形BPOD面积比为2:3 ?若存在,求出 点P的坐标;若不存在,请说明理由.‎ 解:(1)由题意得: ‎ ‎∴B(-2,0) …………3分 ‎ ‎ ‎(2)设抛物线的解析式为y=ax(x+2),代入点A(1, ),得,‎ ‎∴ …………6分 C A B O y x ‎(3)存在点C.过点A作AF垂直于x轴于点F,抛物线 的对称轴x= - 1交x轴于点E.当点C位于对称轴 与线段AB的交点时,△AOC的周长最小.‎ ‎∵ △BCE∽△BAF,‎ ‎ …………9分 ‎ ‎(4)存在. 如图,设p(x,y),直线AB为y=kx+b,则 ‎ ,‎ ‎ ∴直线AB为,‎ ‎ = |OB||YP|+|OB||YD|=|YP|+|YD|‎ ‎ =.‎ ‎∵S△AOD= S△AOB-S△BOD =-×2×∣x+∣=-x+. ‎ y x A O D B P ‎∴==. ‎ ‎ ∴x1=- , x2=1(舍去).‎ ‎∴p(-,-) .‎ 又∵S△BOD =x+, ‎ ‎∴ == .‎ ‎∴x1=- , x2=-2.‎ P(-2,0),不符合题意.‎ ‎∴ 存在,点P坐标是(-,-). …………12分 ‎(桂林2010)11.将抛物线绕它的顶点旋转180°,所得抛物线的解析式是( D ).‎ ‎ A. B.‎ C. D.‎ ‎(桂林2010)12.如图,已知正方形ABCD的边长为4 ,E是BC边上的一个 动点,AE⊥EF, EF交DC于F, 设BE=,FC=,则当 点E从点B运动到点C时,关于的函数图象是( A ).‎ A. B. C. D.‎ ‎(桂林2010)15.函数的自变量的取值范围是 .>1‎ ‎(2010年兰州)5. 二次函数的图像的顶点坐标是 ‎ A.(-1,8) B.(1,8) C.(-1,2) D.(1,-4)‎ 答案 A ‎(2010年兰州)13. 抛物线图像向右平移2个单位再向下平移3个单位,所得图像的解析式为,则b、c的值为 ‎ A . b=2, c=2 B. b=2,c=0 ‎ ‎ C . b= -2,c=-1 D. b= -3, c=2‎ 答案 B ‎(2010年兰州)15. 抛物线图像如图所示,则一次函数与反比例函数 在同一坐标系内的图像大致为 x x x x x 第15题图 答案D ‎(2010年兰州)20. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.‎ 答案 ‎(2010年兰州)28.(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)‎ ‎(1)当x取何值时,该抛物线的最大值是多少?‎ ‎(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ‎ ‎① 当时,判断点P是否在直线ME上,并说明理由;‎ ‎② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.‎ 图1 第28题图 图2‎ 答案28. (本题满分11分)‎ ‎ 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)‎ 故可得c=0,b=4‎ 所以抛物线的解析式为…………………………………………1分 由 得当x=2时,该抛物线的最大值是4. …………………………………………2分 ‎(2)① 点P不在直线ME上. ‎ 已知M点的坐标为(2,4),E点的坐标为(4,0),‎ 设直线ME的关系式为y=kx+b.‎ 于是得 ,解得 所以直线ME的关系式为y=-2x+8. …………………………………………3分 由已知条件易得,当时,OA=AP=,…………………4分 ‎∵ P点的坐标不满足直线ME的关系式y=-2x+8. [来源:Zxxk.Com]‎ ‎∴ 当时,点P不在直线ME上. ……………………………………5分 ‎②以P、N、C、D为顶点的多边形面积可能为5‎ ‎∵ 点A在x轴的非负半轴上,且N在抛物线上, ‎ ‎∴ OA=AP=t.‎ ‎∴ 点P,N的坐标分别为(t,t)、(t,-t 2+4t) …………………………………6分 ‎∴ AN=-t 2+4t (0≤t≤3) ,‎ ‎∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t ‎ ‎…………………………………………………………………………………7分 ‎(ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴ S=DC·AD=×3×2=3. ‎ ‎(ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形 ‎∵ PN∥CD,AD⊥CD,‎ ‎∴ S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3…………………8分 当-t 2+3 t+3=5时,解得t=1、2…………………………………………………9分 ‎ 而1、2都在0≤t≤3范围内,故以P、N、C、D为顶点的多边形面积为5‎ 综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,‎ 当t=1时,此时N点的坐标(1,3)………………………………………10分 当t=2时,此时N点的坐标(2,4)………………………………………11分 说明:(ⅱ)中的关系式,当t=0和t=3时也适合.(故在阅卷时没有(ⅰ),只有(ⅱ)也可以,不扣分)‎ ‎(2010年无锡)24.(本题满分10分)如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.‎ 设直线AC与直线x=4交于点E.‎ ‎(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;本试卷由无锡市天一实验学校金杨建录制 QQ:623300747.转载请注明!‎ ‎(2)设(1)中的抛物线与x轴的另一个交点为N,‎ M是该抛物线上位于C、N之间的一动点,求 ‎△CMN面积的最大值.‎ 答案解:(1)点C的坐标.设抛物线的函数关系式为,‎ ‎ 则,解得 ‎∴所求抛物线的函数关系式为…………①‎ 设直线AC的函数关系式为则,解得.‎ ‎∴直线AC的函数关系式为,∴点E的坐标为 把x=4代入①式,得,∴此抛物线过E点.‎ ‎(2)(1)中抛物线与x轴的另一个交点为N(8,0),设M(x,y),过M作MG⊥x轴于G,则S△CMN=S△MNG+S梯形MGBC—S△CBN=‎ ‎=‎ ‎=‎ ‎∴当x=5时,S△CMN有最大值 ‎(2010年连云港)25.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y(件)与售价x(元)之间存在着如下表所示的一次函数关系.‎ 售价x(元)‎ ‎…‎ ‎70‎ ‎90‎ ‎…‎ 销售量y(件)‎ ‎…‎ ‎3000‎ ‎1000‎ ‎…‎ ‎(利润=(售价-成本价)×销售量)‎ ‎(1)求销售量y(件)与售价x(元)之间的函数关系式;‎ ‎(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?‎ 答案 (1)设一次函数的关系式为,根据题意得............................2分 解之得 ‎ 所以所求的一次关系式为y= -100x+10000........................................................................................5分 ‎(2)由题意得 (x-60)(-100x+10000)=40000‎ 即所以 所以 ‎ 答 当定价为80元时,才能使工艺品厂每天的利润为40000元 ‎(2010宁波市)O 第18题 y ‎·P x 18.如图,已知⊙P的半径为2,圆心P在抛物线y=x2—1上运动,当⊙P与x轴相切时,圆心P的坐标为_________________.‎ ‎(2010宁波市)20.如图,已知二次函数y=— x2+bx+c的图象经过A(2,0)、B(0,—6)两点.‎ ‎(1)求这个二次函数的解析式;‎ ‎(2)设该二次函数图象的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.‎ O 第20题 y A x C B ‎ 8. (2010年金华) 已知抛物线的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ▲ )B ‎ A. 最小值 -3 B. 最大值-‎3 ‎ C. 最小值2 D. 最大值2‎ 15. ‎(2010年金华)若二次函数的部分图象如图所示,则关于x的一元二次方程 的一个解,另一个解 ▲ ;‎ y ‎(第15题图)‎ O x ‎1‎ ‎3‎ 答案:-1;‎ ‎20.(2010年金华)(本题8分)‎ ‎ 已知二次函数y=ax2+bx-3的图象经过点A(2,-3),B(-1,0). ‎ ‎(1)求二次函数的解析式;‎ ‎(2)填空:要使该二次函数的图象与x轴只有一个交点,应把图象沿y轴向上平移 ‎ ▲ 个单位. ‎ 解:(1)由已知,有,即,解得 ‎∴所求的二次函数的解析式为. …………………………………………6分 ‎(2) 4 …………………………………………………………………………………………2分 ‎25.(2010年长沙)已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中且、为实数.‎ ‎(1)求一次函数的表达式(用含b的式子表示);‎ ‎(2)试说明:这两个函数的图象交于不同的两点;‎ ‎(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1-x2 |的范围.‎ 解:(1)∵一次函数过原点∴设一次函数的解析式为y=kx ‎∵一次函数过(1,-b) ∴y=-bx ……………………………3分 ‎(2)∵y=ax2+bx-2过(1,0)即a+b=2 …………………………4分 由得 ……………………………………5分 ‎① ∵△=‎ ‎∴方程①有两个不相等的实数根∴方程组有两组不同的解 ‎∴两函数有两个不同的交点. ………………………………………6分 ‎(3)∵两交点的横坐标x1、x2分别是方程①的解 ‎∴ ‎ ‎∴=‎ 或由求根公式得出 ………………………………………………………8分 ‎∵a>b>0,a+b=2 ∴2>a>1‎ 令函数 ∵在1 0时,函数图象截x轴所得的线段长度大于; ‎ ‎ ③ 当m < 0时,函数在x >时,y随x的增大而减小;‎ ‎ ④ 当m ¹ 0时,函数图象经过同一个点.‎ 其中正确的结论有 A. ①②③④ B. ①②④ C. ①③④ D. ②④‎ 答案:B ‎3、(2010年杭州市)在平面直角坐标系xOy中,抛物线的解析式是y =+1,‎ 点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物 线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点 P(t,0)在x轴上. ‎ ‎ (1) 写出点M的坐标; ‎ ‎ (2) 当四边形CMQP是以MQ,PC为腰的梯形时.‎ ‎① 求t关于x的函数解析式和自变量x的取值范围;‎ ‎② 当梯形CMQP的两底的长度之比为1:2时,求t的值.‎ 答案:‎ ‎(1) ∵OABC是平行四边形,∴AB∥OC,且AB = OC = 4,‎ ‎∵A,B在抛物线上,y轴是抛物线的对称轴,‎ ‎∴ A,B的横坐标分别是2和– 2, ‎ 代入y = +1得, A(2, 2 ),B(– 2,2),‎ ‎∴M(0,2)‎ ‎ (2) 过点Q作QH ^ x轴,设垂足为H, 则HQ = y ,HP = x–t ,‎ 由△HQP∽△OMC,得: , 即: t = x – 2y ,‎ ‎ ∵ Q(x,y) 在y = +1上, ∴ t = – + x –2. ‎ 当点P与点C重合时,梯形不存在,此时,t = – 4,解得x = 1± ,‎ 当Q与B或A重合时,四边形为平行四边形,此时,x = ± 2‎ ‎∴x的取值范围是x ¹ 1±, 且x¹± 2的所有实数 ‎② 分两种情况讨论: ‎ ‎1)当CM > PQ时,则点P在线段OC上, ‎ ‎ ∵ CM∥PQ,CM = 2PQ ,‎ ‎∴点M纵坐标为点Q纵坐标的2倍,即2 = 2( +1),解得x = 0 ,‎ ‎∴t =–+ 0 –2 = –2 ‎ ‎2)当CM < PQ时,则点P在OC的延长线上,‎ ‎ ∵CM∥PQ,CM = PQ,‎ ‎∴点Q纵坐标为点M纵坐标的2倍,即 +1=2´2,解得: x = ± . ‎ 当x = – 时,得t = – – –2 = –8 – , ‎ 当x = 时, 得t = –8. ‎ ‎(2010陕西省)10.将抛物线C:y=x²+3x-10,将抛物线C平移到Cˋ。若两条抛物线C,Cˋ关于直线x=1对称,则下列平移方法中正确的是 (C)‎ A将抛物线C向右平移个单位 B将抛物线C向右平移3个单位 C将抛物线C向右平移5个单位 D将抛物线C向右平移6个单位 ‎(2010陕西省)24.如图,在平面直角坐标系中,抛物线A(-1,0),B(3,0)C(0,-1)三点。‎ ‎(1)求该抛物线的表达式;‎ ‎(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形求所有满足条件点P的坐标。‎ 解:(1)设该抛物线的表达式为y=ax²+bx+c根据题意,得 a- b+c=‎0 a=‎ ‎9a‎+3b+c=0 解之,得 b=‎ c=‎-1 c=-1‎ ‎ ∴所求抛物线的表达式为y=x²-x-1‎ ‎ (2)①AB为边时,只要PQ∥AB且PQ=AB=4即可。‎ ‎ 又知点Q在y轴上,∴点P的横坐标为4或-4,这时符合条件的点P有两个,分别记为P1,P2 .‎ 而当x=4时,y=;当x=-4时,y=7,‎ 此时P1(4,)P2(-4,7)‎ ‎②当AB为对角线时,只要线段PQ与线段AB互相平分即可 又知点Q在Y轴上,且线段AB中点的横坐标为1‎ ‎∴点P的横坐标为2,这时符合条件的P只有一个记为P3‎ 而且当x=2时y=-1 ,此时P3(2,-1)‎ 综上,满足条件的P为P1(4,)P2(-4,7)P3(2,-1)‎ ‎(2010年天津市)(10)已知二次函数()的图象如图所示,有下列结论:(D)‎ 第(10)题 y x O ‎①;‎ ‎②;‎ ‎③;‎ ‎④.‎ ‎ 其中,正确结论的个数是 ‎(A)1‎ ‎(B)2‎ ‎(C)3‎ ‎(D)4‎ ‎(2010年天津市)(16)已知二次函数()中自变量和函数值的部分对应值如下表:‎ ‎…‎ ‎0‎ ‎1‎ ‎…‎ ‎…‎ ‎0‎ ‎…‎ 则该二次函数的解析式为 .‎ ‎(2010年天津市)(26)(本小题10分) ‎ 在平面直角坐标系中,已知抛物线与轴交于点、(点在点的左侧),与轴的正半轴交于点,顶点为.‎ ‎(Ⅰ)若,,求此时抛物线顶点的坐标;‎ ‎(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC中满足 S△BCE = S△ABC,求此时直线的解析式;‎ ‎(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足 S△BCE = 2S△AOC,且顶点恰好落在直线上,求此时抛物线的解析式.‎ 解:解:(Ⅰ)当,时,抛物线的解析式为,即.‎ ‎∴ 抛物线顶点的坐标为(1,4). .................2分 ‎(Ⅱ)将(Ⅰ)中的抛物线向下平移,则顶点在对称轴上,有,‎ ‎∴ 抛物线的解析式为().‎ ‎∴ 此时,抛物线与轴的交点为,顶点为.‎ ‎∵ 方程的两个根为,,‎ ‎∴ 此时,抛物线与轴的交点为,.‎ E y x F B D A O C 如图,过点作EF∥CB与轴交于点,连接,则S△BCE = S△BCF.‎ ‎∵ S△BCE = S△ABC,‎ ‎∴ S△BCF = S△ABC.‎ ‎∴ .‎ 设对称轴与轴交于点,‎ 则.‎ 由EF∥CB,得.‎ ‎∴ Rt△EDF∽Rt△COB.有.‎ ‎∴ .结合题意,解得 .‎ ‎∴ 点,.‎ 设直线的解析式为,则 ‎ 解得 ‎ ‎∴ 直线的解析式为. .........................6分 ‎(Ⅲ)根据题意,设抛物线的顶点为,(,)‎ 则抛物线的解析式为,‎ 此时,抛物线与轴的交点为,‎ 与轴的交点为,.()‎ 过点作EF∥CB与轴交于点,连接,‎ 则S△BCE = S△BCF.‎ 由S△BCE = 2S△AOC,‎ ‎∴ S△BCF = 2S△AOC. 得.‎ 设该抛物线的对称轴与轴交于点.‎ 则 .‎ 于是,由Rt△EDF∽Rt△COB,有.‎ ‎∴ ,即.‎ 结合题意,解得 . ① ‎ ‎∵ 点在直线上,有. ② ‎ ‎∴ 由①②,结合题意,解得.‎ 有,.‎ ‎∴ 抛物线的解析式为. .........................10分 ‎(2010宁夏7.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( B )‎ A. B. C. D..‎ ‎(2010山西23.(本题10分)已知二次函数y=x2-2x-3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.‎ ‎(1)求点A、B、C、D的坐标,并在下面直角坐标系中画出该二次函数的大致图象;‎ ‎(2)说出抛物线y=x2-2x-3可由抛物线y=x2如何平移得到?‎ ‎(3)求四边形OCDB的面积.‎ ‎1.(2010宁德)(本题满分12分)如图1,抛物线 与x轴交于A、C两点,与y轴交于B点,与直线交于A、D两点。‎ ‎⑴直接写出A、C两点坐标和直线AD的解析式;‎ ‎⑵如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?‎ 图2‎ ‎-1‎ ‎3‎ y x ‎0‎ D(5,-2)‎ C B A 图1‎ 解:⑴ A点坐标:(-3,0),C点坐标:C(4,0);………………2分 直线AD解析式:.………………5分 ‎⑵ 所有可能出现的结果如下(用列树状图列举所有可能同样得分):………………8分 第一次 第二次 ‎-1‎ ‎1‎ ‎3‎ ‎4‎ ‎-1‎ ‎(-1,-1)‎ ‎(-1, 1)‎ ‎(-1,3)‎ ‎(-1,4)‎ ‎1‎ ‎(1,-1)‎ ‎(1, 1)‎ ‎(1,3)‎ ‎(1,4)‎ ‎3‎ ‎(3,-1)‎ ‎(3, 1)‎ ‎(3, 3)‎ ‎(3, 4)‎ ‎4‎ ‎(4,-1)‎ ‎(4, 1)‎ ‎(4, 3)‎ ‎(4, 4)‎ 总共有16种结果,每种结果出现的可能性相同,而落在 图1中抛物线与直线围成区域内的结果有7种:‎ ‎(-1,1),(1,-1),(1,1),(1,3),(3,-1),(3,1),(4,-1). …………11分 因此P(落在抛物线与直线围成区域内)=.………………12分 ‎(注:落在抛物线与直线围成区域内的点列举错误1个扣1分,2个及2个以上扣2分。由点列举错误引起概率计算错误不扣分。)‎ ‎2.(2010宁德)(本题满分13分)如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).‎ ‎⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;‎ ‎⑵若△EFG与梯形ABCD重叠部分面积是y,求 ‎①当0<x≤2时,y与x之间的函数关系式;‎ ‎②当2<x≤6时,y与x之间的函数关系式;‎ B E→ F→ C A D G ‎⑶探求⑵中得到的函数y在x取含何值时,存在最大值,并求出最大值.‎ 解:⑴ x,D点;………………3分 ‎⑵ ①当0<x≤2时,△EFG在梯形ABCD内部,所以y=x2;………………6分 ‎②分两种情况:‎ Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上,‎ ‎△EFG与梯形ABCD重叠部分为四边形EFNM,‎ ‎∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.‎ 由于在Rt△NMG中,∠G=60°,‎ 所以,此时 y=x2-(3x-6)2=.………………9分 Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上,‎ ‎△EFG与梯形ABCD重叠部分为△ECP,‎ ‎∵EC=6-x,‎ ‎∴y=(6-x)2=.………………11分 ‎⑶当0<x≤2时,∵y=x2在x>0时,y随x增大而增大,‎ ‎∴x=2时,y最大=;‎ 当2<x<3时,∵y=在x=时,y最大=;‎ 当3≤x≤6时,∵y=在x<6时,y随x增大而减小,‎ ‎∴x=3时,y最大=.………………12分 B E C F A D G P H 图2‎ 综上所述:当x=时,y最大=.………………13分 B E F C A D G N M 图1‎ ‎3(2010黄冈)若函数,则当函数值y=8时,自变量x的值是(D )‎ A.±  B.‎4 ‎ C.±或4  D.4或-‎ ‎4. (2010黄冈)(11分)某同学从家里出发,骑自行车上学时,速度v(米/秒)与时间t(秒)的关系如图a,A(10,5),B(130,5),C(135,0).‎ ‎  (1)求该同学骑自行车上学途中的速度v与时间t的函数关系式;‎ ‎(2)计算该同学从家到学校的路程(提示:在OA和BC段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);‎ ‎(3)如图b,直线x=t(0≤t≤135),与图a的图象相交于P、Q,用字母S表示图中阴影部分面积,试求S与t的函数关系式;‎ ‎(4)由(2)(3),直接猜出在t时刻,该同学离开家所超过的路程与此时S的数量关系.‎ ‎ 图a                    图b 解:(1)‎ ‎(2)2.5×10+5×120+2×5=635(米)‎ ‎(3)‎ ‎(4) 相等的关系 ‎5. (15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).‎ ‎(1)求字母a,b,c的值;‎ ‎(2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形;‎ ‎(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.‎ 解:(1)a=-1,b=2,c=0‎ ‎(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MP=MF=PF=1,故△MPF为正三角形.‎ ‎(3)不存在.因为当t<,x<1时,PM与PN不可能相等,同理,当t>,x>1时,PM与PN不可能相等.‎ 第10题图 y x O ‎-1‎ ‎2‎ ‎1.(2010山东济南)二次函数的图象如图所示,则函数值y<0时 x的取值范围是 A.x<-1 ‎ B.x>2 ‎ C.-1<x<2 ‎ D.x<-1或x>2‎ 答案:C ‎2.(2010山东济南 )‎ 如图所示,抛物线与x轴交于A、B两点,直线BD的函数表达式为,抛物线的对称轴l与直线BD交于点C、与x轴交于点E.‎ ‎⑴求A、B、C三个点的坐标.‎ ‎⑵点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.‎ ‎①求证:AN=BM.‎ D C M N O A B P l 第24题图 y E ‎②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.‎ 答案:.解:⑴令,‎ 解得:, ‎ ‎∴A(-1,0),B(3,0) 2分 ‎∵=,‎ ‎∴抛物线的对称轴为直线x=1,‎ 将x=1代入,得y=2,‎ ‎∴C(1,2). 3分 ‎⑵①在Rt△ACE中,tan∠CAE=,‎ ‎∴∠CAE=60º,‎ 由抛物线的对称性可知l是线段AB的垂直平分线,‎ ‎∴AC=BC,‎ ‎∴△ABC为等边三角形, 4分 ‎∴AB= BC =AC = 4,∠ABC=∠ACB= 60º,‎ 又∵AM=AP,BN=BP,‎ ‎∴BN = CM, ‎ ‎∴△ABN≌△BCM, ‎ ‎∴AN=BM. 5分 ‎②四边形AMNB的面积有最小值. 6分 设AP=m,四边形AMNB的面积为S,‎ 由①可知AB= BC= 4,BN = CM=BP,S△ABC=×42=,‎ ‎∴CM=BN= BP=4-m,CN=m, ‎ 过M作MF⊥BC,垂足为F,‎ 则MF=MC•sin60º=,‎ ‎∴S△CMN==•=, 7分 ‎∴S=S△ABC-S△CMN ‎=-()‎ ‎= 8分 ‎∴m=2时,S取得最小值3. 9分 ‎3.(2010昆明)在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、B(3,)三点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l ,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号) ‎ ‎ ‎ 答案: 解:(1)设抛物线的解析式为:‎ ‎ 由题意得: ……………1分 解得: ………………2分 ‎∴抛物线的解析式为: ………………3分 l′‎ ‎(2)存在 ………………4分 ‎ ‎ 抛物线的顶点坐标是,作抛物线和⊙M(如图),‎ 设满足条件的切线 l 与 x 轴交于点B,与⊙M相切于点C 连接MC,过C作CD⊥ x 轴于D ‎ ‎∵ MC = OM = 2, ∠CBM = 30°, CM⊥BC ‎∴∠BCM = 90° ,∠BMC = 60° ,BM = ‎2CM = 4 , ∴B (-2, 0) ‎ ‎ 在Rt△CDM中,∠DCM = ∠CDM - ∠CMD = 30°‎ ‎∴DM = 1, CD = = ∴ C (1, )‎ 设切线 l 的解析式为:,点B、C在 l 上,可得:‎ ‎ 解得: ‎ ‎∴切线BC的解析式为:‎ ‎∵点P为抛物线与切线的交点 由 解得: ‎ ‎∴点P的坐标为:, ………………8分 ‎∵ 抛物线的对称轴是直线 此抛物线、⊙M都与直线成轴对称图形 于是作切线 l 关于直线的对称直线 l′(如图)‎ 得到B、C关于直线的对称点B1、C1‎ l′满足题中要求,由对称性,得到P1、P2关于直线的对称点:‎ ‎ ,即为所求的点.‎ ‎∴这样的点P共有4个:,,, ………12‎ 分 ‎(本题其它解法参照此标准给分)‎ ‎1.(2010山东德州)‎ 为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.‎ ‎(1)分别求出y1、y2与x之间的函数关系式;‎ ‎(2)若市政府投资140万元,最多能购买多少个太阳能路灯?‎ ‎2.(2010四川宜宾)‎ 将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;‎ ‎24题图 ‎(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.‎ ‎3.(2010山东德州) ‎ 已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3).‎ ‎(1)求此函数的解析式及图象的对称轴;‎ ‎(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.‎ ‎①当t为何值时,四边形ABPQ为等腰梯形;‎ x y O A B C P Q M N 第23题图 ‎②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.‎ 答案:1、解:(1)由题意可知,‎ 当x≤100时,购买一个需元,故;-------------------1分 当x≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤+100=250. ------------------------2分 即100≤x≤250时,购买一个需5000-10(x-100)元,故y1=6000x-10x2;----------4分 当x>250时,购买一个需3500元,故; ----------------5分 所以, ‎ ‎. -------------------------------7分 ‎(2) 当0MN成立的x的取值范围。‎ 解:(1)∠ABE=∠CBD=30° ‎ 在△ABE中,AB=6‎ BC=BE=‎ CD=BCtan30°=4‎ ‎∴OD=OC-CD=2‎ ‎∴B(,6) D(0,2)‎ 设BD所在直线的函数解析式是y=kx+b ‎ ∴ ‎ 所以BD所在直线的函数解析式是 ‎(2)∵EF=EA=ABtan30°= ∠FEG=180°-∠FEB-∠AEB=60°‎ 又∵FG⊥OA ‎ ‎∴FG=EFsin60°=3 GE=EFcos60°= OG=OA-AE-GE=‎ 又H为FG中点 ‎∴H(,) …………4分 ‎∵B(,6) 、 D(0,2)、 H(,)在抛物线图象上 ‎ ‎ ∴ ‎ ‎∴抛物线的解析式是 ‎(2)∵MP=‎ MN=6-‎ H=MP-MN=‎ 由得 该函数简图如图所示:‎ 当00,即HP>MN ‎(苏州2010中考题29).(本题满分9分)如图,以A为顶点的抛物线与y轴交于点B.已知A、B两点的坐标分别为(3,0)、(0,4).‎ ‎ (1)求抛物线的解析式;‎ ‎ (2)设M(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以M、B、O、A为顶点的四边形四条边的长度是四个连续的正整数,求点M的坐标;‎ ‎ (3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,PA2+PB2+PM2>28是 否总成立?请说明理由.‎ 答案:‎ ‎(益阳市2010年中考题20).如图9,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).‎ ‎(1)求经过A、B、C三点的抛物线的解析式;‎ ‎(2)过C点作CD平行于轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;‎ ‎(3)若抛物线的顶点为P,连结PC、PD,判断四边形CEDP的形状,并说明理由.‎ ‎20.解:⑴ 由于抛物线经过点,可设抛物线的解析式为,则,         ‎ ‎ 解得 ‎∴抛物线的解析式为   ……………………………4分 ‎⑵ 的坐标为 ……………………………5分 直线的解析式为 直线的解析式为 ‎ 由 ‎ 求得交点的坐标为        ……………………………8分 ‎⑶ 连结交于,的坐标为 又∵,‎ ‎  ∴,且 ‎    ∴四边形是菱形          ……………………………12分 x ‎(第9题图)‎ y O ‎9. (莱芜)二次函数的图象如图所示,则一次函 数的图象不经过( D )‎ ‎ A.第一象限 B.第二象限 ‎ C.第三象限 D.第四象限 ‎(第24题图)‎ x y O A C B D E F ‎24. (莱芜)如图,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.‎ ‎(1)求此抛物线的解析式;‎ ‎(2)若此抛物线的对称轴与直线交于点D,作 ‎⊙D与x轴相切,⊙D交轴于点E、F两点,求劣弧 EF的长;‎ ‎(3)P为此抛物线在第二象限图像上的一点,PG垂直 于轴,垂足为点G,试确定P点的位置,使得△PGA 的面积被直线AC分为1︰2两部分.‎ 解:(1)∵抛物线经过点,,.‎ ‎∴, 解得.‎ ‎∴抛物线的解析式为:. …………………………3分 ‎(2)易知抛物线的对称轴是.把x=4代入y=2x得y=8,∴点D的坐标为(4,8).‎ ‎∵⊙D与x轴相切,∴⊙D的半径为8. …………………………4分 连结DE、DF,作DM⊥y轴,垂足为点M.‎ 在Rt△MFD中,FD=8,MD=4.∴cos∠MDF=.‎ ‎∴∠MDF=60°,∴∠EDF=120°. …………………………6分 ‎∴劣弧EF的长为:. …………………………7分 ‎(3)设直线AC的解析式为y=kx+b. ∵直线AC经过点.‎ ‎∴,解得.∴直线AC的解析式为:. ………8分 设点,PG交直线AC于N,‎ 则点N坐标为.∵.‎ x y O A C B D E F P G N M ‎∴①若PN︰GN=1︰2,则PG︰GN=3︰2,PG=GN.‎ 即=.‎ 解得:m1=-3, m2=2(舍去).‎ 当m=-3时,=.‎ ‎∴此时点P的坐标为. …………………………10分 ‎②若PN︰GN=2︰1,则PG︰GN=3︰1, PG=3GN.‎ 即=.‎ 解得:,(舍去).当时,=.‎ ‎∴此时点P的坐标为.‎ 综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1︰2两部分. …………………12分 ‎1.(2010,安徽芜湖)二次函数y=ax2+bx+c的图像如图所示,反比例函数y=与正比例函数y=(b+c)x在同一坐标系中的大致图像可能是( )‎ ‎【答案】B ‎2.(2010,浙江义乌)(1)将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2= ▲ ; (2)如图,P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t= ▲ .‎ P y x ‎·‎ ‎【答案】2(x-2)2 或 ‎3.(2010,安徽芜湖)用长度为‎20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm,当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积。‎ ‎【答案】解:根据题意得:等腰直角三角形的直角边长为xm,矩形的一边长为2xm.‎ 其相邻边长为 所以,该金属框围成的面积S=‎ ‎= (0
查看更多