中考数学压轴题精选2及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学压轴题精选2及答案

‎★★11、(2010德化)如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为 (2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.‎ ‎(1)求该抛物线的函数关系式;‎ ‎(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示). ‎ ‎① 当t=时,判断点P是否在直线ME上,并说明理由;‎ 图2‎ B C O A D E M y x P N ‎·‎ 图1‎ B C O ‎(A)‎ D E M y x ‎② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.‎ ‎★★12、(2010德州)已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3).‎ ‎(1)求此函数的解析式及图象的对称轴;‎ ‎(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t秒.‎ ‎①当t为何值时,四边形ABPQ为等腰梯形;‎ x y O A B C P Q M N 第23题图 ‎②设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值.‎ ‎★★13、(2010东阳)如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t。求:‎ ‎(1)C的坐标为 ▲ ;‎ C O A B D N M P x y R H ‎(2)当t为何值时,△ANO与△DMR相似?‎ ‎(3)△HCR面积S与t的函数关系式;‎ 并求以A、B、C、R为顶点的四边形是梯形 时t的值及S的最大值。‎ ‎★★14、(2010恩施)如图11,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.‎ ‎(1)求这个二次函数的表达式.‎ ‎(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POPC, 那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.‎ ‎(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.‎ ‎★★15、(2010广安)如图,直线y = -x-1与抛物线y=ax2+bx-4都经过点A(-1, 0)、B(3, -4).‎ ‎(1)求抛物线的解析式;‎ ‎(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;‎ ‎(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在.请说明理由.‎ ‎ ‎ ‎★★16、(2010广州)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.‎ ‎(1)求弦AB的长;‎ ‎(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;‎ C P D O B A E ‎(3)记△ABC的面积为S,若=4,求△ABC的周长.‎ ‎17.(2010广东广州)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.‎ ‎(1)记△ODE的面积为S,求S与的函数关系式;‎ C D B A E O ‎(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B‎1C1,试探究OA1B‎1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.‎ ‎★★19、(2010杭州)在平面直角坐标系xOy中,抛物线的解析式是y =+1,‎ 点C的坐标为(–4,0),平行四边形OABC的顶点A,B在抛物 线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点 P(t,0)在x轴上. ‎ ‎ (1) 写出点M的坐标; ‎ ‎ (2) 当四边形CMQP是以MQ,PC为腰的梯形时.‎ ‎① 求t关于x的函数解析式和自变量x的取值范围;‎ ‎② 当梯形CMQP的两底的长度之比为1:2时,求t的值.‎ ‎(第24题)‎ ‎★★18、(2010桂林)如图,过A(8,0)、B(0,)两点的直线与直线交于点C.平行于轴的直线从原点O出发,以每秒1个单位长度的速度沿轴向右平移,到C点时停止;分别交线段BC、OC于点D、E,以DE为边向左侧作等边△DEF,设△DEF与△BCO重叠部分的面积为S(平方单位),直线的运动时间为t(秒).‎ ‎(1)直接写出C点坐标和t的取值范围; ‎ ‎(2)求S与t的函数关系式;‎ ‎(3)设直线与轴交于点P,是否存在这样的点P,使得以P、O、F为顶点的三角形为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.‎ ‎★★20、(2010红河州)如图9,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=‎12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以‎4cm/s的速度向点B移动,动点R从点B开始沿BO以‎2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.‎ ‎(1)求∠OAB的度数.‎ ‎(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?‎ ‎(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.‎ ‎(4)是否存在△APQ为等腰三角形,若存在,求出相应的t值,若不存在请说明理由.‎
查看更多

相关文章

您可能关注的文档