- 2021-05-13 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
初三中考专题复习圆综合训练题含答案
2018年 初三中考专题复习 圆 综合训练题 1. 下列条件中,能画出唯一圆的是( ) A.以已知点O为圆心 B.以点O为圆心,5 cm为半径 C.以2 cm为半径 D.经过已知点A,且半径为2 cm 2. 已知⊙O的半径是6 cm,点O到直线l的距离为8 cm,则直线l与⊙O的位置关系是( ) A.相离 B.相切 C.相交 D.无法判断 3. 如图,AB是⊙O的直径,D、C在⊙O上,AD∥OC,∠DAC=30°,连结AC,则∠BOC的度数为( ) A.30° B.60° C.45° D.80° 4. 公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以点O为圆心,OA的长为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的树为( ) A.E、F、G B.F、G、H C.G、H、E D.H、E、F 5. 如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是( ) A.18° B.36° C.54° D.72° 6. 如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在上.若△PEF的周长为6cm,则PA长是( ) A.3 cm B.6 cm C.4 cm D.5 cm 7. 如图,一块直角三角形ABC的斜边AB与量角器直径重合,点D对应54°,则∠BCD的度数为( ) A.27° B.54° C.63° D.36° 8. 如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等. ⊙O与BC相切于点C,与AC相交于点E,则CE的长为( ) A.4 cm B.3 cm C.2 cm D.1.5 cm 9. 如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的长为( ) A.3 B.2 C.3 D.2 10. 如图,在矩形ABCD中,AB=6,AD=10,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( ) A. B.8 C. D.2 11. 如图,在⊙O中,=,∠A=40°,则∠B=_____. 12. 在正方形ABCD中,AB=3,以顶点D为圆心作半径为4的圆,则点B在圆______. 13.已知⊙O的直径是10 cm,点O到直线l的距离为d,若d=4 cm,则l与⊙O有______个公共点. 14.如图, ⊙O的直径为20 cm,弦AB=16 cm,OD⊥AB,垂足为点D.则AB沿OD所在直线方向平移_________cm时可与⊙O相切. 15. 如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC. (1)若∠DFC=40°,求∠CBF的度数; (2)求证:CD⊥DF. 16. 如图,已知PA、PB分别切⊙O于点A、B,BC为⊙O的直径. (1)求证:AC∥OP; (2)若∠APB=60°,BC=10 cm,求AC的长. 参考答案: 1---10 BABAB ACBAA 11. 70° 12. 外 13. 两 14. 4或16 15. 解:(1) ∵∠ADB=∠ACB,∠BAD=∠BFC,∴∠ABD=∠FBC.又∵AB=AD,∴∠ABD=∠ADB.∴∠CBF=∠BCF.∵∠BFC=2∠DFC=80°,∴∠CBF==50°. (2) 证明:令∠CFD=α,则∠BAD=∠BFC=2α,∵四边形ABCD是圆的内接四边形,∴∠BAD+∠BCD=180°,即∠BCD=180°-2α.又∵AB=AD,∴∠ACD=∠ACB=90°-α,∴∠CFD+∠ACD=α+(90°-α)=90°.∴∠CDF=90°,即CD⊥DF. 16. 解:(1)证明:连结OA. ∵PA、PB分别切⊙O于点A、B, ∴OA⊥PA,OB⊥PB,PA=PB, ∴OP平分∠AOB, ∴∠BOA=2∠POB. ∵∠OAC=∠C, ∴∠BOA=∠C+∠OAC=2∠C, ∴∠POB=∠C,∴AC∥OP. (2) 连结AB. ∵PA=PB,∠APB=60°, ∴△PAB是等边三角形,∴∠PBA=60°. 又∵∠PBC=90°,∴∠ABC=30°. ∵BC为⊙O的直径,∴∠BAC=90°, ∴AC=BC=5 cm.查看更多