- 2021-05-13 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
巴中市中考数学试卷含答案
2016年四川省巴中市中考数学试卷 一、选择题:本大题共10个小题,每小题3分,共30分 1.在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( ) A. B. C. D. 2.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( ) A. B. C. D. 3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法表示为( ) A.41×10﹣6 B.4.1×10﹣5 C.0.41×10﹣4 D.4.1×10﹣4 4.下列计算正确的是( ) A.(a2b)2=a2b2 B.a6÷a2=a3 C.(3xy2)2=6x2y4 D.(﹣m)7÷(﹣m)2=﹣m5 5.下列说法正确的是( ) A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件 B.审查书稿中有哪些学科性错误适合用抽样调查法 C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定 D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为 6.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为( ) A.1:2 B.1:3 C.1:4 D.1:1 7.不等式组:的最大整数解为( ) A.1 B.﹣3 C.0 D.﹣1 8.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( ) A.斜坡AB的坡度是10° B.斜坡AB的坡度是tan10° C.AC=1.2tan10°米 D.AB=米 9.下列二次根式中,与是同类二次根式的是( ) A. B. C. D. 10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①c>0; ②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2; ③2a﹣b=0; ④<0, 其中,正确结论的个数是( ) A.1 B.2 C.3 D.4 二、填空题:本大题共10个小题,每小题3分,共30分 11.|﹣0.3|的相反数等于 . 12.函数中,自变量x的取值范围是 . 13.若a+b=3,ab=2,则(a﹣b)2= . 14.两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为 . 15.已知二元一次方程组的解为,则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=﹣x﹣1的交点坐标为 . 16.如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A= . 17.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是 . 18.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为 . 19.把多项式16m3﹣mn2分解因式的结果是 . 20.如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E= 度. 三、解答题:本大题共11个小题,共90分 21.计算:2sin45°﹣3﹣2+(﹣)0+|﹣2|+. 22.定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况. 23.先化简:÷(﹣),然后再从﹣2<x≤2的范围内选取一个合适的x的整数值代入求值. 24.已知:如图,四边形ABCD是平行四边形,延长BA至点E,使AE+CD=AD.连结CE,求证:CE平分∠BCD. 25.为了解中考考生最喜欢做哪种类型的英语客观题,2015年志愿者奔赴全市中考各考点对英语客观题的“听力部分、单项选择、完型填空、阅读理解、口语应用”进行了问卷调查,要求每位考生都自主选择其中一个类型,为此随机调查了各考点部分考生的意向.并将调查结果绘制成如图的统计图表(问卷回收率为100%,并均为有效问卷). 被调查考生选择意向统计表 题型 所占百分比 听力部分 a 单项选择 35% 完型填空 b 阅读理解 10% 口语应用 c 根据统计图表中的信息,解答下列问题: (1)求本次被调查的考生总人数及a、b、c的值; (2)将条形统计图补充完整; (3)全市参加这次中考的考生共有42000人,试估计全市考生中最喜欢做“单项选择”这类客观题的考生有多少人? 26.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图. (1)画出将△ABC向右平移2个单位得到△A1B1C1; (2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2; (3)求△A1B1C1与△A2B2C2重合部分的面积. 27.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每场降价的百分率. 28.如图,在平面直角坐标系xOy中,以点O为圆心的圆分别交x轴的正半轴于点M,交y轴的正半轴于点N.劣弧的长为π,直线y=﹣x+4与x轴、y轴分别交于点A、B. (1)求证:直线AB与⊙O相切; (2)求图中所示的阴影部分的面积(结果用π表示) 29.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6. (1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式;kx+b≤的解集. 30.如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为250(+1)米.已知在以油库C为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C是否会受到影响?请说明理由. 31.如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF. (1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式; (2)求A、B两点的坐标; (3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由. 2016年四川省巴中市中考数学试卷 参考答案 一、选择题 1.D 2.A 3.B 4.D 5.C 6.B 7.C 8.B 9.B 10.B 二、填空题 11.﹣0.3 12. x≤ 13.1 14.7 15.(﹣4,1). 16.35° 17. 1<a<7. 18.18 19.m(4m+n)(4m﹣n). 20.15 三、解答题 21.解:原式=2×﹣+1+2﹣+ =3. 22.解:∵2☆a的值小于0, ∴22a+a=5a<0,解得:a<0. 在方程2x2﹣bx+a=0中, △=(﹣b)2﹣8a≥﹣8a>0, ∴方程2x2﹣bx+a=0有两个不相等的实数根. 23.解:÷(﹣) =÷ =× =. 其中,即x≠﹣1、0、1. 又∵﹣2<x≤2且x为整数, ∴x=2. 将x=2代入中得: ==4. 24.证明:∵四边形ABCD是平行四边形, ∴AB∥CD,AB=CD,AD=BC, ∴∠E=∠DCE, ∵AE+CD=AD, ∴BE=BC, ∴∠E=∠BCE, ∴∠DCE=∠BCE, 即CE平分∠BCD. 25.解:(1)根据题意得:280÷35%=800(人),即本次被调查的考生总人数为800人; 完形填空的百分比b=160÷800×100%=20%;口语训练的百分比c=40÷800×100%=5%,则a=1﹣35%﹣10%﹣20%﹣5%=30%; (2)根据题意得:听力部分人数为800×30%=240(人);阅读理解人数为800×10%=80(人), 补全统计图,如图所示: (3)根据题意得:42000×35%=14700(人). 则全市考生中最喜欢做“单项选择”这类客观题的考生有14700人. 26.解:(1)如图,△A1B1C1为所作; (2)如图,△A2B2C2为所作; (3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,如图, ∵B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0), ∴直线A1B1为y=5x﹣5, 直线B2C2为y=x+1, 直线A2B2为y=﹣x+1, 由解得,∴点E(,), 由解得,∴点F(,). ∴S△BEF=×﹣•﹣•﹣•=. ∴△A1B1C1与△A2B2C2重合部分的面积为. 27.解:设该种药品平均每场降价的百分率是x, 由题意得:200(1﹣x)2=98 解得:x1=1.7(不合题意舍去),x2=0.3=30%. 答:该种药品平均每场降价的百分率是30%. 28.(1)证明:作OD⊥AB于D,如图所示: ∵劣弧的长为π, ∴=, 解得:OM=, 即⊙O的半径为, ∵直线y=﹣x+4与x轴、y轴分别交于点A、B, 当y=0时,x=3;当x=0时,y=4, ∴A(3,0),B(0,4), ∴OA=3,OB=4, ∴AB==5, ∵△AOB的面积=AB•OD=OA•OB, ∴OD===半径OM, ∴直线AB与⊙O相切; (2)解:图中所示的阴影部分的面积=△AOB的面积﹣扇形OMN的面积=×3×4﹣π×()2=6﹣π. 29.解:(1)∵OB=2OA=3OD=6, ∴OB=6,OA=3,OD=2, ∵CD⊥OA, ∴DC∥OB, ∴=, ∴=, ∴CD=10, ∴点C坐标(﹣2,10),B(0,6),A(3,0), ∴解得, ∴一次函数为y=﹣2x+6. ∵反比例函数y=经过点C(﹣2,10), ∴n=﹣20, ∴反比例函数解析式为y=﹣. (2)由解得或, 故另一个交点坐标为(5,﹣4). (3)由图象可知kx+b≤的解集:﹣2≤x<0或x≥5. 30.解:过点C作CD⊥AB于D, ∴AD=CD•cot45°=CD, BD=CD•cot30°=CD, ∵BD+AD=AB=250(+1)(米), 即CD+CD=250(+1), ∴CD=250, 250米>200米. 答:在此路段修建铁路,油库C是不会受到影响. 31.解:(1)∵y=mx2+4mx﹣5m, ∴y=m(x2+4x﹣5)=m(x+5)(x﹣1). 令y=0得:m(x+5)(x﹣1)=0, ∵m≠0, ∴x=﹣5或x=1. ∴A(﹣5,0)、B(1,0). ∴抛物线的对称轴为x=﹣2. ∵抛物线的顶点坐标为为6, ∴﹣9m=6. ∴m=﹣. ∴抛物线的解析式为y=﹣x2﹣x+. (2)由(1)可知:A(﹣5,0)、B(1,0). (3)如图所示: ∵OP的解析式为y=x, ∴∠AOP=30°. ∴∠PBF=60° ∵PD⊥PF,FO⊥OD, ∴∠DPF=∠FOD=90°. ∴∠DPF+∠FOD=180°. ∴点O、D、P、F共圆. ∴∠PDF=∠PBF. ∴∠PDF=60°.查看更多