- 2021-05-11 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学压轴题汇编6
2009年中考数学压轴题汇编(六) (2009年四川凉山州)26.如图,已知抛物线经过,两点,顶点为. (1)求抛物线的解析式; (2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式; y x B A O D (第26题) (3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标. 26.解:(1)已知抛物线经过, 解得 所求抛物线的解析式为. 2分 (2),, 可得旋转后点的坐标为 3分 当时,由得, 可知抛物线过点 将原抛物线沿轴向下平移1个单位后过点. 平移后的抛物线解析式为:. 5分 (3)点在上,可设点坐标为 y x C B A O N D B1 D1 图① 将配方得,其对称轴为. 6分 ①当时,如图①, 此时 y x C B A O D B1 D1 图② N 点的坐标为. 8分 ②当时,如图② 同理可得 此时 点的坐标为. 综上,点的坐标为或. 10分 (2009年武汉市)25.(本题满分12分) y x O A B C 如图,抛物线经过、两点,与轴交于另一点. (1)求抛物线的解析式; (2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标. 25.解:(1)抛物线经过,两点, 解得 抛物线的解析式为. y x O A B C D E (2)点在抛物线上,, 即,或. 点在第一象限,点的坐标为. 由(1)知. 设点关于直线的对称点为点. ,,且, , 点在轴上,且. ,. 即点关于直线对称的点的坐标为(0,1). y x O A B C D E P F (3)方法一:作于,于. 由(1)有:, . ,且. , . ,,, . 设,则,, . 点在抛物线上, , (舍去)或,. y x O A B C D P Q G H 方法二:过点作的垂线交直线于点,过点作轴于.过点作于. . , 又,. ,,. 由(2)知,. ,直线的解析式为. 解方程组得 点的坐标为. (2009年鄂州市)27.如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO (1)试比较EO、EC的大小,并说明理由 (2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由 (3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。 27、(1)EO>EC,理由如下: 由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC, 故EO>EC …2分 (2)m为定值 ∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC) S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC) ·CO ∴ ……………………………………………………4分 (3)∵CO=1, ∴EF=EO= ∴cos∠FEC= ∴∠FEC=60°, ∴ ∴△EFQ为等边三角形, …………………………………………5分 作QI⊥EO于I,EI=,IQ= ∴IO= ∴Q点坐标为 ……………………………………6分 ∵抛物线y=mx2+bx+c过点C(0,1), Q ,m=1 ∴可求得,c=1 ∴抛物线解析式为 ……………………………………7分 (4)由(3), 当时,<AB ∴P点坐标为 …………………8分 ∴BP=AO 方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下: ①时,∴K点坐标为或 ②时, ∴K点坐标为或…………10分 故直线KP与y轴交点T的坐标为 …………………………………………12分 方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30° ①当∠RTP=30°时, ②当∠RTP=60°时, ∴ ……………………………12分 (2009年湖北省黄石市)24、(本题满分9分) 如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。 解答下列问题: (1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为 ,数量关系为 。 ②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么? (2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。 试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法) (3)若AC=4 ,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。 24、解:(1)①CF⊥BD,CF=BD ②成立,理由如下: ∵∠FAD=∠BAC=90° ∴∠BAD=∠CAF 又 BA=CA AD=AF ∴△BAD≌△CAF ∴CF=BD ∠ACF=∠ACB=45° ∴∠BCF=90° ∴CF⊥BD …………(1分) (2)当∠ACB=45°时可得CF⊥BC,理由如下: 如图:过点A作AC的垂线与CB所在直线交于G 则∵∠ACB=45° ∴AG=AC ∠AGC=∠ACG=45° ∵AG=AC AD=AF ………(1分) ∴△GAD≌△CAF(SAS) ∴∠ACF=∠AGD=45° ∴∠GCF=∠GCA+∠ACF=90° ∴CF⊥BC …………(2分) (3)如图:作AQBC于Q ∵∠ACB=45° AC=4 ∴CQ=AQ=4 ∵∠PCD=∠ADP=90° ∴∠ADQ+∠CDP=∠CDP+∠CPD=90° ∴△ADQ∽△DPC ………(1分) ∴= 设CD为x(0<x<3)则DQ=CQ-CD=4-x 则= …………(1分) ∴PC=(-x2+4x)=-(x-2)2+1≥1 当x=2时,PC最长,此时PC=1 ………(1分)查看更多