中考数学专题复习导学案尺规作图含答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学专题复习导学案尺规作图含答案

中考数学专题练习《尺规作图》‎ ‎【知识归纳】‎ 一)尺规作图 ‎1.定义 只用没有刻度的 和 作图叫做尺规作图.‎ ‎2.步骤 ‎①根据给出的条件和求作的图形,写出已知和求作部分; ‎ ‎②分析作图的方法和过程;‎ ‎③用直尺和圆规进行作图;‎ ‎④写出作法步骤,即作法.‎ 二)五种基本作图 ‎1.作一条线段等于已知线段;‎ ‎2.作一个角等于已知角;‎ ‎3.作已知角的平分线;‎ ‎4.过一点作已知直线的垂线;‎ ‎5.作已知线段的垂直平分线.‎ 三)基本作图的应用 ‎1.利用基本作图作三角形 ‎(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.‎ ‎2.与圆有关的尺规作图 ‎(1)过不在同一直线上的三点作圆(即三角形的外接圆).‎ ‎(2)作三角形的内切圆.‎ ‎【基础检测】‎ ‎1.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(‎2a,b+1),则a与b的数量关系为(  )‎ A.a=b B.‎2a+b=﹣‎1C.‎2a﹣b=1D.‎2a+b=1‎ ‎2.如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )‎ A B C A.‎2.5cm ‎ B.‎3.0cm ‎ C.‎3.5cm ‎ D.‎‎4.0cm ‎3.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)‎ ‎4.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B‎1C.‎ ‎(1)画出△A1B‎1C,直接写出点A1、B1的坐标;‎ ‎(2)求在旋转过程中,△ABC所扫过的面积.‎ ‎5.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.‎ ‎(1)试在图中标出点D,并画出该四边形的另两条边;‎ ‎(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.‎ ‎6.已知:线段a及∠ACB.‎ 求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.‎ ‎7.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC ‎ ‎(1)线段BC的长等于  ;‎ ‎(2)请在图中按下列要求逐一操作,并回答问题:‎ ‎①以点  为圆心,以线段的长为半径画弧,与射线BA交于点D,使线段OD的长等于 ‎②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.‎ ‎【达标检测】‎ 一、选择题 ‎1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为(  )‎ A.65° B.60° C.55° D.45°‎ ‎2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.‎ 步骤1:以C为圆心,CA为半径画弧;‎ 步骤2:以B为圆心,BA为半径画弧,将弧于点D;‎ 步骤3:连接AD,交BC延长线于点H.‎ 下列叙述正确的是( )‎ 第10题图 A.BH垂直分分线段AD B.AC平分∠BAD C.S△ABC=BC·AH D.AB=AD 二、填空题 ‎3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB=  . ‎ ‎4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 。‎ ‎①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.‎ 三、解答题 ‎5.(12分)图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)‎ ‎(1)求1路车从A站到D站所走的路程(精确到0.1);‎ ‎(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)‎ ‎6.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.‎ ‎(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;‎ ‎(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.‎ ‎7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)‎ ‎8. 如图,已知BD是矩形ABCD的对角线.‎ ‎(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).‎ ‎(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.‎ ‎9.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.‎ ‎(1)画出将△ABC向右平移2个单位得到△A1B‎1C1;‎ ‎(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B‎2C2;‎ ‎(3)求△A1B‎1C1与△A2B‎2C2重合部分的面积.‎ ‎【知识归纳答案】‎ 一)尺规作图 ‎1.定义 只用没有刻度的直尺和圆规作图叫做尺规作图.‎ ‎2.步骤 ‎①根据给出的条件和求作的图形,写出已知和求作部分;②分析作图的方法和过程;③用直尺和圆规进行作图;④写出作法步骤,即作法.‎ 二)五种基本作图 ‎1.作一条线段等于已知线段;2.作一个角等于已知角;3.作已知角的平分线;4.过一点作已知直线的垂线;5.作已知线段的垂直平分线. ‎ 三)基本作图的应用 ‎1.利用基本作图作三角形 ‎(1)已知三边作三角形;(2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形;(4)已知底边及底边上的高作等腰三角形;(5)已知一直角边和斜边作直角三角形.‎ ‎2.与圆有关的尺规作图 ‎(1)过不在同一直线上的三点作圆(即三角形的外接圆).‎ ‎(2)作三角形的内切圆.‎ ‎【基础检测答案】‎ ‎1.)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(‎2a,b+1),则a与b的数量关系为(  )‎ A.a=b B.‎2a+b=﹣‎1C.‎2a﹣b=1D.‎2a+b=1‎ ‎【解析】作图—基本作图;坐标与图形性质;角平分线的性质.根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|‎2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.‎ ‎【解答】解:根据作图方法可得点P在第二象限角平分线上,‎ 则P点横纵坐标的和为0,‎ 故‎2a+b+1=0,‎ 整理得:‎2a+b=﹣1,‎ 故选:B.‎ ‎【点评】此题主要考查了每个象限内点的坐标特点,以及角平分线的性质,关键是掌握各象限角平分线上的点的坐标特点|横坐标|=|纵坐标|.‎ ‎2.如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( )‎ A B C A.‎2.5cm ‎ B.‎3.0cm ‎ C.‎3.5cm ‎ D.‎‎4.0cm ‎【答案】B ‎【解析】首先根据题意画出图形,由“两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形,再根据平行四边形的性质对角线相等,得出AD=BC.最后利用刻度尺进行测量即可.‎ ‎【方法指导】此题主要考查了复杂作图以及平行四边形的判定和性质,关键是正确理解题意,画出图形.‎ ‎3.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)‎ ‎【考点】作图—相似变换.‎ ‎【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.‎ ‎【解答】解:如图,AD为所作.‎ ‎ ‎ ‎4. (8分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B‎1C.‎ ‎(1)画出△A1B‎1C,直接写出点A1、B1的坐标;‎ ‎(2)求在旋转过程中,△ABC所扫过的面积.‎ ‎【考点】作图-旋转变换;扇形面积的计算.‎ ‎【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可,根据A、B的坐标建立坐标系,据此写出点A1、B1的坐标;‎ ‎(2)利用勾股定理求出AC的长,根据△ABC扫过的面积等于扇形CAA1的面积与△ABC的面积和,然后列式进行计算即可.‎ ‎【解答】解:(1)所求作△A1B‎1C如图所示:‎ 由A(4,3)、B(4,1)可建立如图所示坐标系,‎ 则点A1的坐标为(﹣1,4),点B1的坐标为(1,4);‎ ‎(2)∵AC===,∠ACA1=90°‎ ‎∴在旋转过程中,△ABC所扫过的面积为:‎ S扇形CAA1+S△ABC ‎=+×3×2‎ ‎=+3.‎ ‎5.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC. ‎ ‎(1)试在图中标出点D,并画出该四边形的另两条边;‎ ‎(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.‎ ‎【考点】作图-平移变换.‎ ‎【分析】(1)画出点B关于直线AC的对称点D即可解决问题.‎ ‎(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.‎ ‎【解答】解:(1)点D以及四边形ABCD另两条边如图所示.‎ ‎(2)得到的四边形A′B′C′D′如图所示.‎ ‎6.(2016.山东省青岛市,4分)已知:线段a及∠ACB.‎ 求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.‎ ‎【考点】作图—复杂作图.‎ ‎【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可. ‎ ‎【解答】解:①作∠ACB的平分线CD,‎ ‎②在CD上截取CO=a,‎ ‎③作OE⊥CA于E,以O我圆心,OE长为半径作圆;‎ 如图所示:⊙O即为所求.‎ ‎7.如图,OA=2,以点A为圆心,1为半径画⊙A与OA的延长线交于点C,过点A画OA的垂线,垂线与⊙A的一个交点为B,连接BC ‎(1)线段BC的长等于  ;‎ ‎(2)请在图中按下列要求逐一操作,并回答问题:‎ ‎①以点 A 为圆心,以线段 BC 的长为半径画弧,与射线BA交于点D,使线段OD的长等于 ‎②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.‎ ‎【考点】作图—复杂作图.‎ ‎【分析】(1)由圆的半径为1,可得出AB=AC=1,结合勾股定理即可得出结论;‎ ‎(2)①结合勾股定理求出AD的长度,从而找出点D的位置,根据画图的步骤,完成图形即可;‎ ‎②根据线段的三等分点的画法,结合OA=‎2AC,即可得出结论.‎ ‎【解答】解:(1)在Rt△BAC中,AB=AC=1,∠BAC=90°,‎ ‎∴BC==.‎ 故答案为:.‎ ‎(2)①在Rt△OAD中,OA=2,OD=,∠OAD=90°,‎ ‎∴AD===BC.‎ ‎∴以点A为圆心,以线段BC的长为半径画弧,与射线BA交于点D,使线段OD的长等于.‎ 依此画出图形,如图1所示.‎ 故答案为:A;BC.‎ ‎②∵OD=,OP=,OC=OA+AC=3,OA=2,‎ ‎∴.‎ 故作法如下:‎ 连接CD,过点A作AP∥CD交OD于点P,P点即是所要找的点.‎ 依此画出图形,如图2所示.‎ ‎【达标检测答案】‎ 一、选择题 ‎1.)如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为(  )‎ A.65° B.60° C.55° D.45°‎ ‎【考点】线段垂直平分线的性质.‎ ‎【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.‎ ‎【解答】解:由题意可得:MN是AC的垂直平分线,‎ 则AD=DC,故∠C=∠DAC,‎ ‎∵∠C=30°,‎ ‎∴∠DAC=30°,‎ ‎∵∠B=55°,‎ ‎∴∠BAC=95°,‎ ‎∴∠BAD=∠BAC﹣∠CAD=65°,‎ 故选A.‎ ‎【点评】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键. ‎ ‎2.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.‎ 步骤1:以C为圆心,CA为半径画弧;‎ 步骤2:以B为圆心,BA为半径画弧,将弧于点D;‎ 步骤3:连接AD,交BC延长线于点H.‎ 下列叙述正确的是( )‎ 第10题图 A.BH垂直分分线段AD B.AC平分∠BAD C.S△ABC=BC·AH D.AB=AD 答案:A 解析:AD相当于一个弦,BH、CH⊥AD;B、D两项不一定;C项面积应除以2。‎ 知识点:尺规作图 二、填空题 ‎3.如图,已知线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= 5 . ‎ ‎【考点】作图—基本作图;线段垂直平分线的性质.‎ ‎【分析】根据线段垂直平分线的作法可知直线CD是线段AB的垂直平分线,利用线段垂直平分线性质即可解决问题. ‎ ‎【解答】解:由题意直线CD是线段AB的垂直平分线,‎ ‎∵点F在直线CD上,‎ ‎∴FA=FB,‎ ‎∵FA=5,‎ ‎∴FB=5.‎ 故答案为5.‎ ‎4.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的是 。‎ ‎①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.‎ ‎【解析】①根据作图的过程可以判定AD是∠BAC的角平分线;‎ ‎②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;‎ ‎③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;‎ ‎④利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.‎ ‎【解答】解:①根据作图的过程可知,AD是∠BAC的平分线.‎ 故①正确;‎ ‎②如图,∵在△ABC中,∠C=90°,∠B=30°,‎ ‎∴∠CAB=60°.‎ 又∵AD是∠BAC的平分线,‎ ‎∴∠1=∠2=∠CAB=30°,‎ ‎∴∠3=90°﹣∠2=60°,即∠ADC=60°.‎ 故②正确;‎ ‎③∵∠1=∠B=30°,‎ ‎∴AD=BD,‎ ‎∴点D在AB的中垂线上.‎ 故③正确;‎ ‎④∵如图,在直角△ACD中,∠2=30°,‎ ‎∴CD=AD,‎ ‎∴BC=CD+BD=AD+AD=AD,S△DAC=AC•CD=AC•AD.‎ ‎∴S△ABC=AC•BC=AC•AD=AC•AD,‎ ‎∴S△DAC:S△ABC=AC•AD: AC•AD=1:3.‎ 故④正确.‎ 综上所述,正确的结论是:①②③④.‎ ‎【点评】本题考查了角平分线的性质、线段垂直平分线的性质以及作图﹣基本作图.解题时,需要熟悉等腰三角形的判定与性质. ‎ 三、解答题 ‎5.(12分)图1是某公交公司1路车从起点站A站途经B站和C站,最终到达终点站D站的格点站路线图.(8×8的格点图是由边长为1的小正方形组成)‎ ‎(1)求1路车从A站到D站所走的路程(精确到0.1);‎ ‎(2)在图2、图3和图4的网格中各画出一种从A站到D站的路线图.(要求:①与图1路线不同、路程相同;②途中必须经过两个格点站;③所画路线图不重复)‎ ‎【考点】作图—应用与设计作图;勾股定理的应用.‎ ‎【分析】(1)先根据网格求得AB、BC、CD三条线段的长,再相加求得所走的路程的近似值;‎ ‎(2)根据轴对称、平移或中心对称等图形的变换进行作图即可.‎ ‎【解答】解:(1)根据图1可得:,,CD=3‎ ‎∴A站到B站的路程=≈9.7;‎ ‎(2)从A站到D站的路线图如下:‎ ‎6.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.‎ ‎(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;‎ ‎(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上. ‎ ‎【考点】作图-轴对称变换.‎ ‎【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;‎ ‎(2)直接利用网格结合矩形的性质以及勾股定理得出答案.‎ ‎【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;‎ ‎(2)如图2所示:四边形ABCD即为所求.‎ ‎7.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)‎ ‎【考点】作图—相似变换.‎ ‎【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.‎ ‎【解答】解:如图,AD为所作.‎ ‎8.如图,已知BD是矩形ABCD的对角线.‎ ‎(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).‎ ‎(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.‎ ‎【考点】矩形的性质;作图—基本作图.‎ ‎【分析】(1)分别以B、D为圆心,比BD的一半长为半径画弧,交于两点,确定出垂直平分线即可;‎ ‎(2)连接BE,DF,四边形BEDF为菱形,理由为:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD与BC平行,得到一对内错角相等,等量代换及等角对等边得到BE=BF,再由BF=DF,等量代换得到四条边相等,即可得证.‎ ‎【解答】解:(1)如图所示,EF为所求直线;‎ ‎(2)四边形BEDF为菱形,理由为:‎ 证明:∵EF垂直平分BD,‎ ‎∴BE=DE,∠DEF=∠BEF,‎ ‎∵AD∥BC,‎ ‎∴∠DEF=∠BFE,‎ ‎∴∠BEF=∠BFE,‎ ‎∴BE=BF,‎ ‎∵BF=DF,‎ ‎∴BE=ED=DF=BF,‎ ‎∴四边形BEDF为菱形.‎ ‎9.如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.‎ ‎(1)画出将△ABC向右平移2个单位得到△A1B‎1C1;‎ ‎(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B‎2C2;‎ ‎(3)求△A1B‎1C1与△A2B‎2C2重合部分的面积.‎ ‎【考点】作图-旋转变换;作图-平移变换.‎ ‎【分析】(1)将△ABC向右平移2个单位即可得到△A1B‎1C1.‎ ‎(2)将△ABC绕点O顺时针方向旋转90°即可得到的△A2B‎2C2.‎ ‎(3)B‎2C2与A1B1相交于点E,B‎2A2与A1B1相交于点F,如图,求出直线A1B1,B‎2C2,A2B2,列出方程组求出点E、F坐标即可解决问题.‎ ‎【解答】解:(1)如图,△A1B‎1C1为所作;‎ ‎(2)如图,△A2B‎2C2为所作;‎ ‎(3)B‎2C2与A1B1相交于点E,B‎2A2与A1B1相交于点F,如图,‎ ‎∵B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0),‎ ‎∴直线A1B1为y=5x﹣5,‎ 直线B‎2C2为y=x+1,‎ 直线A2B2为y=﹣x+1,‎ 由解得,∴点E(1.5,2.5),‎ 由解得,∴点F(,).‎ ‎∴S△BEF=.‎ ‎∴△A1B‎1C1与△A2B‎2C2重合部分的面积为.‎
查看更多

相关文章

您可能关注的文档