- 2021-05-10 发布 |
- 37.5 KB |
- 31页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年山东省威海市中考数学试卷
2019年山东省威海市中考数学试卷 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分) 1.(3分)﹣3的相反数是( ) A.﹣3 B.3 C. D. 2.(3分)据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( ) A.8.89×1013 B.8.89×1012 C.88.9×1012 D.8.89×1011 3.(3分)如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是( ) A. B. C. D. 4.(3分)如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是( ) A. B. C. D. 5.(3分)下列运算正确的是( ) A.(a2)3=a5 B.3a2+a=3a3 C.a5÷a2=a3(a≠0) D.a(a+1)=a2+1 6.(3分)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( ) A.条形统计图 B.频数直方图 C.折线统计图 D.扇形统计图 7.(3分)如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是( ) 第31页(共31页) A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD 8.(3分)计算(﹣3)0+﹣(﹣)﹣1的结果是( ) A.1+ B.1+2 C. D.1+4 9.(3分)解不答式组时,不等式①②的解集在同一条数轴上表示正确的是( ) A. B. C. D. 10.(3分)已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是( ) A.2023 B.2021 C.2020 D.2019 11.(3分)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的. 施工时间/天 1 2 3 4 5 6 7 8 9 累计完成施工量/米 35 70 105 140 160 215 270 325 380 下列说法错误的是( ) A.甲队每天修路20米 B.乙队第一天修路15米 C.乙队技术改进后每天修路35米 第31页(共31页) D.前七天甲,乙两队修路长度相等 12.(3分)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为( ) A.+ B.2+ C.4 D.2+2 二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果) 13.(3分)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2= °. 14.(3分)分解因式:2x2﹣2x+= . 15.(3分)如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD= . 16.(3分)一元二次方程3x2=4﹣2x的解是 . 17.(3分)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC= °. 18.(3分)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是 (用含k的代数式表示). 第31页(共31页) 三、解答题(本大题共7小题,共66分) 19.(7分)列方程解应用题: 小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度. 20.(8分)在一个箱内装入只有标号不同的三颗小球,标号分别为1,2,3.每次随机取出一颗小球,记下标号作为得分,再将小球放回箱内.小明现已取球三次,得分分别为1分,3分,2分,小明又从箱内取球两次,若五次得分的平均数不小于2.2分,请用画树状图或列表的方法,求发生“五次取球得分的平均数不小于2.2分”情况的概率. 21.(8分)(1)阅读理解 如图,点A,B在反比例函数y=的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数y=的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1). 小红通过观察反比例函数y=的图象,并运用几何知识得出结论: AE+BG=2CF,CF>DF 由此得出一个关于,,,之间数量关系的命题: 若n>1,则 . (2)证明命题 小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题. 小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题. 请你选择一种方法证明(1)中的命题. 第31页(共31页) 22.(9分)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部. 23.(10分)在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下 x …… ﹣1 0 1 2 3 …… y甲 …… 6 3 2 3 6 …… 乙写错了常数项,列表如下: x …… ﹣1 0 1 2 3 …… y乙 …… ﹣2 ﹣1 2 7 14 …… 通过上述信息,解决以下问题: (1)求原二次函数y=ax2+bx+c(a≠0)的表达式; (2)对于二次函数y=ax2+bx+c(a≠0),当x 时,y的值随x的值增大而增大; (3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围. 24.(12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE, 第31页(共31页) CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒. (1)求证:CE=EF; (2)求y与x之间关系的函数表达式,并写出自变量x的取值范围; (3)求△BEF面积的最大值. 25.(12分)(1)方法选择 如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD. 小颖认为可用截长法证明:在DB上截取DM=AD,连接AM… 小军认为可用补短法证明:延长CD至点N,使得DN=AD… 请你选择一种方法证明. (2)类比探究 【探究1】 如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论. 【探究2】 如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是 . (3)拓展猜想 如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是 . 第31页(共31页) 第31页(共31页) 2019年山东省威海市中考数学试卷 参考答案与试题解析 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是正确的.每小题选对得3分,选错、不选或多选,均不得分) 1.(3分)﹣3的相反数是( ) A.﹣3 B.3 C. D. 【分析】依据相反数的定义解答即可. 【解答】解:﹣3的相反数是3. 故选:B. 【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键. 2.(3分)据央视网报道,2019年1~4月份我国社会物流总额为88.9万亿元人民币,“88.9万亿”用科学记数法表示为( ) A.8.89×1013 B.8.89×1012 C.88.9×1012 D.8.89×1011 【分析】利用科学记数法的表示形式进行解答即可 【解答】解:法一:88.9万亿=88.9×104×108=88.9×1012 用科学记数法表示:88.9×1012=8.89×1013 法二:科学记数法表示为:88.9万亿=889 000 000 000 0=8.89×1013 故选:A. 【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.) 3.(3分)如图,一个人从山脚下的A点出发,沿山坡小路AB走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB的长度,下列按键顺序正确的是( ) A. B. C. D. 【分析】在△ABC中,通过解直角三角形可得出sinA=,则AB= 第31页(共31页) ,即可得出结论. 【解答】解:在△ABC中,sinA=sin20°=, ∴AB==, ∴按键顺序为:2÷sin20= 故选:A. 【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题以及计算器,熟练应用计算器是解题关键. 4.(3分)如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是( ) A. B. C. D. 【分析】根据俯视图是从上面看到的图形进而得出答案. 【解答】解:从上面看,得到的视图是:, 故选:C. 【点评】本题考查了三视图的知识,关键是找准俯视图所看的方向. 5.(3分)下列运算正确的是( ) A.(a2)3=a5 B.3a2+a=3a3 C.a5÷a2=a3(a≠0) D.a(a+1)=a2+1 【分析】根据合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质对各选项分析判断后利用排除法求解. 【解答】解:A、(a2)3=a6,故本选项错误; B、3a2+a,不是同类项,不能合并,故本选项错误; C、a5÷a2=a3(a≠0),正确; D、a(a+1)=a2+a,故本选项错误. 故选:C. 【点评】 第31页(共31页) 本题考查了合并同类项法则,幂的乘方的性质,单项式与多项式乘法法则,同底数幂的除法的性质.熟练掌握法则是解题的关键. 6.(3分)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是( ) A.条形统计图 B.频数直方图 C.折线统计图 D.扇形统计图 【分析】根据题意,需要反映部分与总体的关系,故最适合的统计图是扇形统计图. 【解答】解:欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图. 故选:D. 【点评】本题主要考查了统计图的应用,熟练掌握各种统计图的特点是解答本题的关键. 7.(3分)如图,E是▱ABCD边AD延长线上一点,连接BE,CE,BD,BE交CD于点F.添加以下条件,不能判定四边形BCED为平行四边形的是( ) A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD 【分析】根据平行四边形的性质得到AD∥BC,AB∥CD,求得DE∥BC,∠ABD=∠CDB,推出BD∥CE,于是得到四边形BCED为平行四边形,故A正确;根据平行线的性质得到∠DEF=∠CBF,根据全等三角形的性质得到EF=BF,于是得到四边形BCED为平行四边形,故B正确;根据平行线的性质得到∠AEB=∠CBF,求得∠CBF=∠BCD,求得CF=BF,同理,EF=DF,不能判定四边形BCED为平行四边形;故C错误;根据平行线的性质得到∠DEC+∠BCE=∠EDB+∠DBC=180°,推出∠BDE=∠BCE,于是得到四边形BCED为平行四边形,故D正确. 【解答】解:∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD, ∴DE∥BC,∠ABD=∠CDB, ∵∠ABD=∠DCE, ∴∠DCE=∠CDB, ∴BD∥CE, 第31页(共31页) ∴BCED为平行四边形,故A正确; ∵DE∥BC, ∴∠DEF=∠CBF, 在△DEF与△CBF中,, ∴△DEF≌△CBF(AAS), ∴EF=BF, ∵DF=CF, ∴四边形BCED为平行四边形,故B正确; ∵AE∥BC, ∴∠AEB=∠CBF, ∵∠AEB=∠BCD, ∴∠CBF=∠BCD, ∴CF=BF, 同理,EF=DF, ∴不能判定四边形BCED为平行四边形;故C错误; ∵AE∥BC, ∴∠DEC+∠BCE=∠EDB+∠DBC=180°, ∵∠AEC=∠CBD, ∴∠BDE=∠BCE, ∴四边形BCED为平行四边形,故D正确, 故选:C. 【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键. 8.(3分)计算(﹣3)0+﹣(﹣)﹣1的结果是( ) 第31页(共31页) A.1+ B.1+2 C. D.1+4 【分析】分别根据零次幂、二次根式的性质以及负指数幂化简即可求解. 【解答】解:原式=1+=1+. 故选:D. 【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式、绝对值等考点的运算. 9.(3分)解不答式组时,不等式①②的解集在同一条数轴上表示正确的是( ) A. B. C. D. 【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集. 【解答】解:解不等式①得:x≤﹣1, 解不等式②得:x<5, 将两不等式解集表示在数轴上如下: 故选:D. 【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了. 10.(3分)已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是( ) A.2023 B.2021 C.2020 D.2019 【分析】根据题意可知b=3﹣b2,a+b=﹣1,ab﹣3,所求式子化为a2﹣b+2019=a2﹣ 第31页(共31页) 3+b2+2019=(a+b)2﹣2ab+2016即可求解; 【解答】解:a,b是方程x2+x﹣3=0的两个实数根, ∴b=3﹣b2,a+b=﹣1,ab﹣3, ∴a2﹣b+2019=a2﹣3+b2+2019=(a+b)2﹣2ab+2016=1+6+2016=2023; 故选:A. 【点评】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 11.(3分)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的. 施工时间/天 1 2 3 4 5 6 7 8 9 累计完成施工量/米 35 70 105 140 160 215 270 325 380 下列说法错误的是( ) A.甲队每天修路20米 B.乙队第一天修路15米 C.乙队技术改进后每天修路35米 D.前七天甲,乙两队修路长度相等 【分析】根据题意和表格中的数据可以判断各个选项中的说法是否正确,本题得以解决. 【解答】解:由题意可得, 甲队每天修路:160﹣140=20(米),故选项A正确; 乙队第一天修路:35﹣20=15(米),故选项B正确; 乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确; 前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误; 故选:D. 【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 12.(3分)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为( ) 第31页(共31页) A.+ B.2+ C.4 D.2+2 【分析】连接PA,PB,PC,过P作PD⊥AB于D,PE⊥BC于E,根据圆周角定理得到∠APB=120°,根据等腰三角形的性质得到∠PAB=∠PBA=30°,由垂径定理得到AD=BD=3,解直角三角形得到PD=,PA=PB=PC=2,根据勾股定理得到CE===2,于是得到结论. 【解答】解:连接PA,PB,PC,过P作PD⊥AB于D,PE⊥BC于E, ∵∠ACB=60°, ∴∠APB=120°, ∵PA=PB, ∴∠PAB=∠PBA=30°, ∵A(﹣5,0),B(1,0), ∴AB=6, ∴AD=BD=3, ∴PD=,PA=PB=PC=2, ∵PD⊥AB,PE⊥BC,∠AOC=90°, ∴四边形PEOD是矩形, ∴OE=PD=,PE=OD=2, ∴CE===2, ∴OC=CE+OE=2+, ∴点C的纵坐标为2+, 故选:B. 第31页(共31页) 【点评】本题考查了圆周角定理,坐标与图形性质,垂径定理,勾股定理,正确的作出辅助线是解题的关键. 二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果) 13.(3分)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2= 68 °. 【分析】由等腰直角三角形的性质得出∠A=∠C=45°,由三角形的外角性质得出∠AGB=68°,再由平行线的性质即可得出∠2的度数. 【解答】解:∵△ABC是含有45°角的直角三角板, ∴∠A=∠C=45°, ∵∠1=23°, ∴∠AGB=∠C+∠1=68°, ∵EF∥BD, ∴∠2=∠AGB=68°; 故答案为:68. 【点评】此题主要考查了等腰直角三角形的性质、平行线的性质以及三角形的外角性质,关键是掌握两直线平行,同位角相等. 14.(3分)分解因式:2x2﹣2x+= 2(x﹣)2 . 【分析】直接提取公因式2,再利用公式法分解因式即可. 【解答】解:原式=2(x2﹣x+) =2(x﹣)2. 故答案为:2(x﹣)2. 第31页(共31页) 【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键. 15.(3分)如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DEC,若AB=6,则CD= 3 . 【分析】延长BC、AD相交于点F,可证△EBC≌△EFC,可得BC=CF,则CD为△ABF的中位线,故CD=可求出. 【解答】解:如图,延长BC、AD相交于点F, ∵CE⊥BC, ∴∠BCE=∠FCE=90°, ∵∠BEC=∠DEC,CE=CE, ∴△EBC≌△EFC(ASA), ∴BC=CF, ∵AB∥DC, ∴AD=DF, ∴DC=. 故答案为:3. 【点评】本题考查了平行线的性质,全等三角形的判定与性质,三角形的中位线定理等知识,解题的关键是正确作出辅助线. 16.(3分)一元二次方程3x2=4﹣2x的解是 x1=,x2= . 【分析】直接利用公式法解方程得出答案. 【解答】解:3x2=4﹣2x 第31页(共31页) 3x2+2x﹣4=0, 则b2﹣4ac=4﹣4×3×(﹣4)=52>0, 故x=, 解得:x1=,x2=. 故答案为:x1=,x2=. 【点评】此题主要考查了公式法解方程,正确掌握公式法是解题关键. 17.(3分)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC= 105 °. 【分析】作DE⊥AB于E,CF⊥AB于F,则DE=CF,由等腰直角三角形的性质得出CF=AF=BF=AB,得出DE=CF=AB=BD,∠BAD=∠BDA,由直角三角形的性质得出∠ABD=30°,得出∠BAD=∠BDA=75°,再由平行线的性质即可得出答案. 【解答】解:作DE⊥AB于E,CF⊥AB于F,如图所示: 则DE=CF, ∵CF⊥AB,∠ACB=90°,AC=BC, ∴CF=AF=BF=AB, ∵AB=BD,∴DE=CF=AB=BD,∠BAD=∠BDA, ∴∠ABD=30°, ∴∠BAD=∠BDA=75°, ∵AB∥CD, ∴∠ADC+∠BAD=180°, ∴∠ADC=105°; 故答案为:105°. 第31页(共31页) 【点评】本题考查了等腰直角三角形的性质、平行线的性质、含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证出∠ABD=30°是解题的关键. 18.(3分)如图,在平面直角坐标系中,点A,B在反比例函数y=(k≠0)的图象上运动,且始终保持线段AB=4的长度不变.M为线段AB的中点,连接OM.则线段OM长度的最小值是 (用含k的代数式表示). 【分析】如图,当OM⊥AB时,线段OM长度的最小.首先证明点A与点B关于直线y=x对称,因为点A,B在反比例函数y=(k≠0)的图象上,AB=4,所以可以假设A(m,),则B(m+4,﹣4),则有=,解得k=m2+4m,推出A(m,m+4),B(m+4,m),可得M(m+2,m+2),求出OM即可解决问题. 【解答】解:如图,当OM⊥AB时,线段OM长度的最小, ∵M为线段AB的中点, ∴OA=OB, ∵点A,B在反比例函数y=(k≠0)的图象上, ∴点A与点B关于直线y=x对称, ∵AB=4, ∴可以假设A(m,),则B(m+4,﹣4), ∴=, 解得k=m2+4m, 第31页(共31页) ∴A(m,m+4),B(m+4,m), ∴M(m+2,m+2), ∴OM===, ∴OM的最小值为. 故答案为. 【点评】本题考查反比例函数图象上的点的特征,反比例函数的性质等知识,解题的关键是理解题意,学会利用参数解决问题,属于中考填空题中的压轴题. 三、解答题(本大题共7小题,共66分) 19.(7分)列方程解应用题: 小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度. 【分析】直接利用小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,进而得出等式求出答案. 【解答】解:设小明的速度是x米/分钟,则小刚骑自行车的速度是3x米/分钟,根据题意可得: ﹣4=, 解得:x=50, 经检验得:x=50是原方程的根,故3x=150, 答:小明的速度是50米/分钟,则小刚骑自行车的速度是150米/分钟. 【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键. 第31页(共31页) 20.(8分)在一个箱内装入只有标号不同的三颗小球,标号分别为1,2,3.每次随机取出一颗小球,记下标号作为得分,再将小球放回箱内.小明现已取球三次,得分分别为1分,3分,2分,小明又从箱内取球两次,若五次得分的平均数不小于2.2分,请用画树状图或列表的方法,求发生“五次取球得分的平均数不小于2.2分”情况的概率. 【分析】先画树状图展示所有9种等可能的结果数,再找出发生“五次取球得分的平均数不小于2.2分”的结果数,然后根据概率公式求解. 【解答】解:树状图如下: 共有9种等可能的结果数, 由于五次得分的平均数不小于2.2分, ∴五次的总得分不小于11分, ∴后2次的得分不小于5分, 而在这9种结果中,得出不小于5分的有3种结果, ∴发生“五次取球得分的平均数不小于2.2分”情况的概率为=. 【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率. 21.(8分)(1)阅读理解 如图,点A,B在反比例函数y=的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x轴的垂线,垂足为E,F,G,CF交反比例函数y=的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1). 小红通过观察反比例函数y=的图象,并运用几何知识得出结论: AE+BG=2CF,CF>DF 由此得出一个关于,,,之间数量关系的命题: 若n>1,则 +> . (2)证明命题 小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题. 小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题. 请你选择一种方法证明(1)中的命题. 第31页(共31页) 【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得+>. (2)方法一利用求差法比较大小,方法二:利用求商法比较大小. 【解答】解:(1)∵AE+BG=2CF,CF>DF,AE=,BG=,DF=, ∴+>. 故答案为:+>. (2)方法一:∵+﹣==, ∵n>1, ∴n(n﹣1)(n+1)>0, ∴+﹣>0, ∴+>. 方法二:∵=>1, ∴+>. 【点评】本题考查反比例函数图形上的点的坐标特征,反比例函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题. 22.(9分)如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH 第31页(共31页) =α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E会不会触碰到汽车货厢顶部. 【分析】根据题意作出合适的辅助线,然后利用锐角三角函数求出BM+EN的长度,再与2比较大小即可解答本题. 【解答】解:∵BH=0.6米,sinα=, ∴AB==1米, ∴AH=0.8米, ∵AF=FC=2米, ∴BF=1米, 作FJ⊥BG于点J,作EK⊥FJ于点K, ∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,BF=AB, ∴△EFK∽△FBJ∽△ABH,△FBJ≌△ABH, ∴,BJ=BH=0.6米, 即, 解得,EK=1.28, ∴BJ+EK=0.6+1.28=1.88<2, ∴木箱上部顶点E不会触碰到汽车货厢顶部. 第31页(共31页) 【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答. 23.(10分)在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下 x …… ﹣1 0 1 2 3 …… y甲 …… 6 3 2 3 6 …… 乙写错了常数项,列表如下: x …… ﹣1 0 1 2 3 …… y乙 …… ﹣2 ﹣1 2 7 14 …… 通过上述信息,解决以下问题: (1)求原二次函数y=ax2+bx+c(a≠0)的表达式; (2)对于二次函数y=ax2+bx+c(a≠0),当x ≥﹣1 时,y的值随x的值增大而增大; (3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围. 【分析】(1)由甲同学的错误可知c=3,由乙同学提供的数据选x=﹣1,y=﹣2;x=1,y=2,代入解析式求出a和b即可; (2)y=﹣3x2+2x+3的对称轴为直线x=,抛物线开口向下; (3)﹣3x2+2x+3﹣k=0有两个不相等的实数根,判别式△>0即可; 【解答】解:(1)由甲同学的错误可知c=3, 由甲同学提供的数据选x=﹣1,y=6;x=1,y=2, 有, ∴, ∴a=1, 由甲同学给的数据a=1,c=3是正确的; 由乙同学提供的数据,可知c=﹣1, 选x=﹣1,y=﹣2;x=1,y=2, 有, ∴, 第31页(共31页) ∴a=1,b=2, ∴y=x2+2x+3; (2)y=x2+2x+3的对称轴为直线x=﹣1, ∴抛物线开口向上, ∴当x≥﹣1时,y的值随x的值增大而增大; 故答案为≥﹣1; (3)方程ax2+bx+c=k(a≠0)有两个不相等的实数根, 即x2+2x+3﹣k=0有两个不相等的实数根, ∴△=4﹣4(3﹣k)>0, ∴k>2; 【点评】本题考查二次函数的图象及性质;掌握待定系数法求函数解析式,熟练函数图象是解题的关键. 24.(12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2,E点的运动时间为x秒. (1)求证:CE=EF; (2)求y与x之间关系的函数表达式,并写出自变量x的取值范围; (3)求△BEF面积的最大值. 【分析】(1)作辅助线,构建三角形全等,证明△AEM≌△EFN和△ADE≌△CDE(SAS),可得AE=CE=EF; (2)分两种情况:根据三角形的面积公式可得y与x之间关系的函数表达式,根据勾股定理计算BD的长可得x的取值; (3)根据(2)中的两种情况,分别利用配方法和二次函数的增减性可得结论. 第31页(共31页) 【解答】(1)证明:如图1,过E作MN∥AB,交AD于M,交BC于N, ∵四边形ABCD是正方形, ∴AD∥BC,AB⊥AD, ∴MN⊥AD,MN⊥BC, ∴∠AME=∠FNE=90°=∠NFE+∠FEN, ∵AE⊥EF, ∴∠AEF=∠AEM+∠FEN=90°, ∴∠AEM=∠NFE, ∵∠DBC=45°,∠BNE=90°, ∴BN=EN=AM, ∴△AEM≌△EFN(AAS), ∴AE=EF, ∵四边形ABCD是正方形, ∴AD=CD,∠ADE=∠CDE, ∵DE=DE, ∴△ADE≌△CDE(SAS), ∴AE=CE=EF; (2)解:在Rt△BCD中,由勾股定理得:BD==10, ∴0≤x≤5, 由题意得:BE=2x, ∴BN=EN=x, 由(1)知:AE=EF=EC, 分两种情况: 第31页(共31页) ①当0≤x≤时,如图1, ∵AB=MN=10, ∴ME=FN=10﹣x, ∴BF=FN﹣BN=10﹣x﹣x=10﹣2x, ∴y===﹣2x2+5x; ②当<x≤5时,如图2,过E作EN⊥BC于N, ∴EN=BN=x, ∴FN=CN=10﹣x, ∴BF=BC﹣2CN=10﹣2(10﹣x)=2x﹣10, ∴y===2x2﹣5x; 综上,y与x之间关系的函数表达式为:; (3)解:①当0≤x≤时,如图1, y=﹣2x2+5x=﹣2(x﹣)2+, ∵﹣2<0, ∴当x=时,y有最大值是; ②当<x≤5时,如图2, ∴y=2x2﹣5x=2(x﹣)2﹣, ∵2>0, ∴当x>时,y随x的增大而增大 ∴当x=5时,y有最大值是50; 综上,△BEF面积的最大值是50. 第31页(共31页) 【点评】此题是四边形的综合题,主要考查正方形的性质,全等三角形的判定与性质,勾股定理,三角形面积,二次函数的最值等知识点的理解和掌握,难度适中,熟练掌握正方形中利用辅助线构建全等来解决问题是本题的关键. 25.(12分)(1)方法选择 如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD. 小颖认为可用截长法证明:在DB上截取DM=AD,连接AM… 小军认为可用补短法证明:延长CD至点N,使得DN=AD… 请你选择一种方法证明. (2)类比探究 【探究1】 如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论. 【探究2】 如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是 BD=CD+2AD . (3)拓展猜想 如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是 BD=CD+AD . 第31页(共31页) 【分析】(1)方法选择:根据等边三角形的性质得到∠ACB=∠ABC=60°,如图①,在BD上截取DEMAD,连接AM,由圆周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根据全等三角形的性质得到BM=CD,于是得到结论; (2)类比探究:如图②,由BC是⊙O的直径,得到∠BAC=90°,根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根据全等三角形的性质得到结论; 【探究2】如图③,根据圆周角定理和三角形的内角和得到∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,求得∠AMD=30°,根据直角三角形的性质得到MD=2AD,根据相似三角形的性质得到BM=CD,于是得到结论; (3)如图④,由BC是⊙O的直径,得到∠BAC=90°,过A作AM⊥AD交BD于M,求得∠MAD=90°,根据相似三角形的性质得到BM=CD,DM=AD,于是得到结论. 【解答】解:(1)方法选择:∵AB=BC=AC, ∴∠ACB=∠ABC=60°, 如图①,在BD上截取DEMAD,连接AM, ∵∠ADB=∠ACB=60°, ∴△ADM是等边三角形, ∴AM=AD, ∵∠ABM=∠ACD, ∵∠AMB=∠ADC=120°, ∴△ABM≌△ACD(AAS), ∴BM=CD, ∴BD=BM+DM=CD+AD; (2)类比探究:如图②, ∵BC是⊙O的直径, ∴∠BAC=90°, ∵AB=AC, ∴∠ABC=∠ACB=45°, 过A作AM⊥AD交BD于M, 第31页(共31页) ∵∠ADB=∠ACB=45°, ∴△ADM是等腰直角三角形, ∴AM=AD,∠AMD=45°, ∴DM=AD, ∴∠AMB=∠ADC=135°, ∵∠ABM=∠ACD, ∴△ABM≌△ACD(AAS), ∴BM=CD, ∴BD=BM+DM=CD+AD; 【探究2】如图③,∵若BC是⊙O的直径,∠ABC=30°, ∴∠BAC=90°,∠ACB=60°, 过A作AM⊥AD交BD于M, ∵∠ADB=∠ACB=60°, ∴∠AMD=30°, ∴MD=2AD, ∵∠ABD=∠ACD,∠AMB=∠ADC=150°, ∴△ABM∽△ACD, ∴=, ∴BM=CD, ∴BD=BM+DM=CD+2AD; 故答案为:BD=CD+2AD; (3)拓展猜想:BD=BM+DM=CD+AD; 理由:如图④,∵若BC是⊙O的直径, ∴∠BAC=90°, 过A作AM⊥AD交BD于M, ∴∠MAD=90°, ∴∠BAM=∠DAC, ∴△ABM∽△ACD, 第31页(共31页) ∴=, ∴BM=CD, ∵∠ADB=∠ACB,∠BAC=∠NAD=90°, ∴△ADM∽△ACB, ∴==, ∴DM=AD, ∴BD=BM+DM=CD+AD. 故答案为:BD=CD+AD 【点评】 第31页(共31页) 本题考查了圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/7/4 17:16:49;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557 第31页(共31页)查看更多