2010年广州市中考试题(含答案解析)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2010年广州市中考试题(含答案解析)

绝密*启用前 ‎2010年广州市中考试题 数 学 本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时102分钟 注意事项:‎ ‎1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑。‎ ‎2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。‎ ‎3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。‎ ‎4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。‎ 第一部分(选择题 共30分)‎ 一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的。)‎ ‎1. (2010广东广州,1,3分)如果+10%表示“增加10%”,那么“减少8%”可以记作( )‎ A.-18% B.-8% C.+2% D.+8%‎ ‎ 【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.‎ ‎【答案】B ‎ 【涉及知识点】负数的意义 ‎【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度.‎ ‎【推荐指数】★‎ ‎2. (2010广东广州,2,3分)将图1所示的直角梯形绕直线l旋转一周,得到的立体图开是( )‎ ‎ ‎ ‎ A. B. C. D. 图1‎ ‎【分析】图1是一个直角题型,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.‎ ‎【答案】C ‎ 【涉及知识点】面动成体 ‎【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点线面体之间关系的理解,考查知识点单一,有利于提高本题的信度.‎ ‎【推荐指数】★‎ ‎3. (2010广东广州,3,3分)下列运算正确的是( )‎ A.-3(x-1)=-3x-1 B.-3(x-1)=-3x+1‎ C.-3(x-1)=-3x-3 D.-3(x-1)=-3x+3‎ ‎【分析】去括号时,要按照去括号法则,将括号前的-3与括号内每一项分别相乘,尤其需要注意,-3与-1相乘时,应该是+3而不是减3.‎ ‎【答案】D ‎ 【涉及知识点】去括号 ‎【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是-3只与x相乘,忘记乘以-1;二是-3与-1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分,信度相当好.‎ ‎【推荐指数】★★‎ ‎4. (2010广东广州,4,3分)在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是( )‎ A.2.5 B.‎5 ‎ C.10 D.15‎ ‎【分析】由D、E分别是边AB、AC的中点可知,DE是△ABC的中位线,根据中位线定理可知,DE=BC=2.5.‎ ‎【答案】A ‎ 【涉及知识点】中位线 ‎【点评】本题考查了中位线的性质,三角形的中位线是指连接三角形两边中点的线段,中位线的特征是平行于第三边且等于第三边的一半.‎ ‎【推荐指数】★★‎ ‎5. (2010广东广州,5,3分)不等式的解集是( )‎ A.-<x≤2 B.-3<x≤‎2 ‎ C.x≥2 D.x<-3‎ ‎【分析】解不等式①,得:x>-3;解不等式②,得:x≤2,所以不等式组的解集为-3<x<2.‎ ‎【答案】B ‎ 【涉及知识点】解不等式组 ‎【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分.‎ ‎【推荐指数】★★★‎ ‎6. (2010广东广州,6,3分)从图2的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是中心对称称图形的卡片的概率是( )‎ ‎ ‎ 图2‎ A. B. C. D.1‎ ‎【分析】在这四个图片中只有第三幅图片是中心对称图形,因此是中心对称称图形的卡片的概率是.‎ ‎【答案】A ‎ 【涉及知识点】中心对称图形 概率 ‎【点评】本题将两个简易的知识点,中心对称图形和概率组合在一起,是一个简单的综合问题,其中涉及的中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形,简易概率求法公式:P(A)=,其中0≤P(A)≤1.‎ ‎【推荐指数】★★★★‎ ‎7. (2010广东广州,7,3分)长方体的主视图与俯视图如图所示,则这个长方体的体积是( )‎ A.52 B.‎32 ‎ C.24 D.9‎ ‎ ‎ ‎ 主视图 俯视图 ‎【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位.‎ ‎【答案】C ‎ 【涉及知识点】三视图 ‎【点评】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题是由两种视图来推测整个正方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.‎ ‎【推荐指数】★★★★‎ ‎8. (2010广东广州,8,3分)下列命题中,正确的是( )‎ A.若a·b>0,则a>0,b>0 B.若a·b<0,则a<0,b<0‎ C.若a·b=0,则a=0,且b=0 D.若a·b=0,则a=0,或b=0‎ ‎【分析】A项中a·b>0可得a、b同号,可能同为正,也可能同为负;B项中a·b<0可得a、b异号,所以错误;C项中a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零.‎ ‎【答案】D ‎ 【涉及知识点】乘法法则 命题真假 ‎【点评】本题主要考查乘法法则,只有深刻理解乘法法则才能求出正确答案,需要考生具备一定的思维能力.‎ ‎【推荐指数】★★‎ ‎9. (2010广东广州,9,3分)若a<1,化简=( )‎ A.a﹣2 B.2﹣a C.a D.﹣a ‎【分析】根据公式可知:=,由于a<1,所以a-1<0,因此=(1-a)-1=-a.‎ ‎【答案】D ‎ 【涉及知识点】二次根式的化简 ‎【点评】本题主要考查二次根式的化简,难度中等偏难.‎ ‎【推荐指数】★★★‎ ‎10.(2010广东广州,10,3分)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知有一种密码,将英文26个小写字母a,b,c,…,z依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c 字母 a b c d e f g h i j k l m 序号 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ 字母 n o p q r s t u v w x y z 序号 ‎13‎ ‎14‎ ‎15‎ ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ ‎21‎ ‎22‎ ‎23‎ ‎24‎ ‎25‎ 按上述规定,将明文“maths”译成密文后是( )‎ A.wkdrc B.wkhtc C.eqdjc D.eqhjc ‎【分析】m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以本题译成密文后是wkdrc.‎ ‎【答案】A ‎ 【涉及知识点】阅读理解 ‎【点评】本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.‎ ‎【推荐指数】★★★★‎ 第二部分(非选择题 共120分)‎ 二、填空题(本大题共6小题,每小题3分,满分18分.)‎ ‎11.(2010广东广州,11,3分)“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.‎ ‎【分析】358000可表示为3.58×100000,100000=105,因此358000=3.58×105.‎ ‎【答案】3.58×105‎ ‎【涉及知识点】科学记数法 ‎【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a×10的形式(其中1≤<10,n为整数,这种计数法称为科学记数法),其方法是(1)确定a,a是只有一位整数的数;(2)确定n;当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).‎ ‎【推荐指数】★★★★★‎ ‎12.(2010广东广州,12,3分)若分式有意义,则实数x的取值范围是_______.‎ ‎【分析】由于分式的分母不能为0,x-5在分母上,因此x-5≠0,解得x≠5.‎ ‎【答案】‎ ‎【涉及知识点】分式的意义 ‎【点评】初中阶段涉及有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零.‎ ‎【推荐指数】★★★‎ ‎13.(2010广东广州,13,3分)老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是=51、=12.则成绩比较稳定的是_______ (填“甲”、“乙”中的一个).‎ ‎【分析】由于两人的平均分一样,因此两人成绩的水平相同;由于>,所以乙的成绩比甲的成绩稳定.‎ ‎【答案】乙 ‎【涉及知识点】数据分析 ‎【点评】平均数是用来衡量一组数据的一般水平,而方差则用了反映一组数据的波动情况,方差越大,这组数据的波动就越大.‎ ‎【推荐指数】★★★‎ ‎14.(2010广东广州,14,3分)一个扇形的圆心角为90°.半径为2,则这个扇形的弧长为________. (结果保留)‎ ‎【分析】扇形弧长可用公式:求得,由于本题n=90°,r=2,因此这个扇形的弧长为π.‎ ‎【答案】π ‎【涉及知识点】弧长公式 ‎【点评】与圆有关的计算一直是中考考查的重要内容,主要考点有:弧长和扇形面积及其应用等.‎ ‎【推荐指数】★★★★‎ ‎15.(2010广东广州,15,3分)因式分解:3ab2+a2b=_______.‎ ‎【分析】3ab2+a2b=ab (3b+a).‎ ‎【答案】ab (3b+a)‎ ‎【涉及知识点】提公因式法因式分解 ‎【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).‎ ‎【推荐指数】★★★‎ ‎16.(2010广东广州,16,3分)如图4,BD是△ABC的角平分线,∠ABD=36°,∠C=72°,则图中的等腰三角形有_____个.‎ ‎【分析】由于BD是△ABC的角平分线,所以∠ABC=2∠ABD=72°,所以∠ABC=∠C=72°,所以△ABC是等腰三角形.∠A=180°-2∠ABC=180°-2×72°=36°,故∠A=∠ABD,所以△ABD是等腰三角形∠DBC=∠ABD=36°,∠C=72°,可求∠BDC=72°,故∠BDC=∠C,所以△BDC是等腰三角形.‎ ‎【答案】3‎ ‎【涉及知识点】等腰三角形的判定 ‎【点评】要想说明一个三角形是等腰三角形,只要能找到两个相等的角或两条相等的边即可,本题主要考查的“等角对等边”的应用,本题难度中等,只要细心,很容易拿分.‎ ‎【推荐指数】★★★★‎ 三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)‎ ‎17.(2010广东广州,17,9分)解方程组 ‎【答案】‎ ‎①+②,得4x=12,解得:x=3.‎ 将x=3代入①,得9-2y=11,解得y=-1.‎ 所以方程组的解是.‎ ‎【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.‎ ‎【推荐指数】★★★‎ ‎18.(2010广东广州,18,9分)如图5,在等腰梯形ABCD中,AD∥BC.‎ 求证:∠A+∠C=180°‎ ‎【分析】由于AD∥BC,所以∠A+∠B=180°,要想说明∠A+∠C=180°,只需根据等腰梯形的两底角相等来说明∠B=∠C即可.‎ ‎【答案】证明:∵梯形ABCD是等腰梯形,‎ ‎∴∠B=∠C 又∵AD∥BC,‎ ‎∴∠A+∠B=180°‎ ‎∴∠A+∠C=180°‎ ‎【涉及知识点】等腰梯形性质 ‎【点评】本题是一个简单的考查等腰梯形性质的解答题,属于基础题.‎ ‎【推荐指数】★★★‎ ‎19.(2010广东广州,19,10分)已知关于x的一元二次方程有两个相等的实数根,求的值。‎ ‎ 【分析】由于这个方程有两个相等的实数根,因此⊿=,可得出a、b之间的关系,然后将化简后,用含b的代数式表示a,即可求出这个分式的值.‎ ‎【答案】解:∵有两个相等的实数根,‎ ‎∴⊿=,即.‎ ‎∵‎ ‎∵,∴‎ ‎【涉及知识点】分式化简,一元二次方程根的判别式 ‎【点评】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度.‎ ‎20.(2010广东广州,20,10分)广州市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四 个等级,划分等级后的数据整理如下表:‎ 等级 非常了解 比较了解 基本了解 不太了解 频数 ‎40‎ ‎120‎ ‎36‎ ‎4‎ 频率 ‎0.2‎ m ‎0.18‎ ‎0.02‎ ‎(1)本次问卷调查取样的样本容量为_______,表中的m值为_______.‎ ‎(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图6所对应的扇形的圆心角的度数,并补全扇形统计图.‎ ‎(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?‎ ‎【分析】(1)由于非常了解频数40,频率为0.2,因此样本容量为:40÷0.2=200,表中的m是比较了解的频率,可用频数120除以样本容量200;(2)非常了解的频率为0.2,扇形圆心角的度数为0.2×360°=72°;(3)由样本中“比较了解”的频率0.6可以估计总体中“比较了解”的频率也是0.6.‎ ‎【答案】(1)200;0.6;‎ ‎(2)72°;补全图如下:‎ ‎(3)1800×0.6=900‎ ‎【涉及知识点】扇形统计图 样本估计总体 ‎【点评】统计图表是中考的必考内容,本题渗透了统计图、样本估计总体的知识,数据的问题在中考试卷中也有越来越综合的趋势.‎ ‎【推荐指数】★★★★★‎ ‎21.(2010广东广州,21,12分)已知抛物线y=-x2+2x+2.‎ ‎(1)该抛物线的对称轴是 ,顶点坐标 ;‎ ‎(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;‎ x ‎…‎ ‎…‎ y ‎…‎ ‎…‎ ‎(3)若该抛物线上两点A(x1,y1),B(x2,y2)的横坐标满足x1>x2>1,试比较y1与y2的大小.‎ ‎【分析】(1)代入对称轴公式和顶点公式(-,)即可;(3)结合图像可知这两点位于对称轴右边,图像随着x的增大而减少,因此y1<y2.‎ ‎【答案】解:(1)x=1;(1,3)‎ ‎(2)‎ x ‎…‎ ‎-1‎ ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎…‎ y ‎…‎ ‎-1‎ ‎2‎ ‎3‎ ‎2‎ ‎-1‎ ‎…‎ ‎(3)因为在对称轴x=1右侧,y随x的增大而减小,又x1>x2>1,所以y1<y2.‎ ‎【涉及知识点】抛物线的顶点、对称轴、描点法画图、函数增减性 ‎【点评】二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的相关基本概念即可解题.‎ ‎【推荐指数】★★★★★‎ ‎22.(2010广东广州,22,12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为‎610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.‎ ‎(1)求大楼与电视塔之间的距离AC;‎ ‎(2)求大楼的高度CD(精确到‎1米)‎ ‎【分析】(1)由于∠ACB=45°,∠A=90°,因此△ABC是等腰直角三角形,所以AC=AB=610;(2)根据矩形的对边相等可知:DE=AC=‎610米,在Rt△BDE中,运用直角三角形的边角关系即可求出BE的长,用AB的长减去BE的长度即可.‎ ‎【答案】(1)由题意,AC=AB=610(米);‎ ‎(2)DE=AC=610(米),在Rt△BDE中,tan∠BDE=,故BE=DEtan39°. ‎ 因为CD=AE,所以CD=AB-DE·tan39°=610-610×tan39°≈116(米)‎ ‎ 答:大楼的高度CD约为‎116米.‎ ‎【涉及知识点】解直角三角形 ‎【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力,很容易上手,容易出错的地方是近似值的取舍.‎ ‎【推荐指数】★★★★★‎ ‎23.(2010广东广州,23,12分)已知反比例函数y=(m为常数)的图象经过点A(-1,6).‎ ‎(1)求m的值;‎ ‎(2)如图9,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.‎ ‎【分析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,则△CBE∽△CAD,运用相似三角形知识求出CE的长即可求出点C的横坐标.‎ ‎【答案】解:(1)∵ 图像过点A(-1,6),. ∴ ‎(2)分别过点A、B作x轴的垂线,垂足分别为点D、E,‎ 由题意得,AD=6,OD=1,易知,AD∥BE,‎ ‎∴△CBE∽△CAD,∴ .‎ ‎∵AB=2BC,∴‎ ‎∴,∴BE=2.‎ 即点B的纵坐标为2‎ 当y=2时,x=-3,易知:直线AB为y=2x+8,‎ ‎∴C(-4,0)‎ ‎【涉及知识点】反比例函数 ‎【点评】由于今年来各地中考题不断降低难度,中考考查知识点有向低年级平移的趋势,反比例函数出现在解答题中的频数越来约多.‎ ‎【推荐指数】★★★★‎ ‎24.(2010广东广州,24,14分)如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.‎ ‎(1)求弦AB的长;‎ ‎(2)判断∠ACB是否为定值,若是,求出∠ACB的大小;否则,请说明理由;‎ ‎(3)记△ABC的面积为S,若=4,求△ABC的周长.‎ C P D O B A E ‎【分析】(1)连接OA,OP与AB的交点为F,则△OAF为直角三角形,且OA=1,OF=,借助勾股定理可求得AF的长;‎ F C P D O B A E H G ‎(2)要判断∠ACB是否为定值,只需判定∠CAB+∠ABC的值是否是定值,由于⊙D是△ABC的内切圆,所以AD和BD分别为∠CAB和∠ABC的角平分线,因此只要∠DAE+∠DBA是定值,那么CAB+∠ABC就是定值,而∠DAE+∠DBA等于弧AB所对的圆周角,这个值等于∠AOB值的一半;‎ ‎(3)由题可知=DE (AB+AC+BC),又因为,所以,所以AB+AC+BC=,由于DH=DG=DE,所以在Rt△CDH中,CH=DH=DE,同理可得CG=DE,又由于AG=AE,BE=BH,所以AB+AC+BC=CG+CH+AG+AB+BH=DE+,可得=DE+,解得:DE=,代入AB+AC+BC=,即可求得周长为.‎ ‎【答案】解:(1)连接OA,取OP与AB的交点为F,则有OA=1.‎ F C P D O B A E H G ‎∵弦AB垂直平分线段OP,∴OF=OP=,AF=BF.‎ 在Rt△OAF中,∵AF===,∴AB=2AF=.‎ ‎(2)∠ACB是定值.‎ 理由:由(1)易知,∠AOB=120°,‎ 因为点D为△ABC的内心,所以,连结AD、BD,则∠CAB=2∠DAE,∠CBA=2∠DBA,‎ 因为∠DAE+∠DBA=∠AOB=60°,所以∠CAB+∠CBA=120°,所以∠ACB=60°;‎ ‎(3)记△ABC的周长为l,取AC,BC与⊙D的切点分别为G,H,连接DG,DC,DH,则有DG=DH=DE,DG⊥AC,DH⊥BC.‎ ‎∴‎ ‎=AB•DE+BC•DH+AC•DG=(AB+BC+AC) •DE=l•DE.‎ ‎∵=4,∴=4,∴l=8DE.‎ ‎∵CG,CH是⊙D的切线,∴∠GCD=∠ACB=30°,‎ ‎∴在Rt△CGD中,CG===DE,∴CH=CG=DE.‎ 又由切线长定理可知AG=AE,BH=BE,‎ ‎∴l=AB+BC+AC=2+2DE=8DE,解得DE=,‎ ‎∴△ABC的周长为.‎ ‎ 【涉及知识点】垂径定理 勾股定理 内切圆 切线长定理 三角形面积 ‎【点评】本题巧妙将垂径定理、勾股定理、内切圆、切线长定理、三角形面积等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题 ‎【推荐指数】★★★★★‎ ‎25.(2010广东广州,25,14分)如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-+交折线OAB于点E.‎ ‎(1)记△ODE的面积为S,求S与的函数关系式;‎ ‎(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B‎1C1,试探究OA1B‎1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.‎ C D B A E O ‎【分析】(1)要表示出△ODE的面积,要分两种情况讨论,①如果点E在OA边上,只需求出这个三角形的底边OE长(E点横坐标)和高(D点纵坐标),代入三角形面积公式即可;②如果点E在AB边上,这时△ODE的面积可用长方形OABC的面积减去△OCD、△OAE、△BDE的面积; ‎ ‎(2)重叠部分是一个平行四边形,由于这个平行四边形上下边上的高不变,因此决定重叠部分面积是否变化的因素就是看这个平行四边形落在OA边上的线段长度是否变化.‎ ‎【答案】(1)由题意得B(3,1).‎ 若直线经过点A(3,0)时,则b=‎ 若直线经过点B(3,1)时,则b=‎ 若直线经过点C(0,1)时,则b=1‎ ‎①若直线与折线OAB的交点在OA上时,即1<b≤,如图25-a,‎ 图1‎ ‎ 此时E(2b,0)‎ ‎∴S=OE·CO=×2b×1=b ‎②若直线与折线OAB的交点在BA上时,即<b<,如图2‎ 图2‎ 此时E(3,),D(2b-2,1)‎ ‎∴S=S矩-(S△OCD+S△OAE +S△DBE )‎ ‎= 3-[(2b-1)×1+×(5-2b)·()+×3()]=‎ ‎∴‎ ‎(2)如图3,设O‎1A1与CB相交于点M,OA与C1B1相交于点N,则矩形OA1B‎1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。‎ 本题答案由无锡市天一实验学校金杨建老师草制!‎ 图3‎ 由题意知,DM∥NE,DN∥ME,∴四边形DNEM为平行四边形 根据轴对称知,∠MED=∠NED 又∠MDE=∠NED,∴∠MED=∠MDE,∴MD=ME,∴平行四边形DNEM为菱形.‎ 过点D作DH⊥OA,垂足为H,‎ 由题易知,tan∠DEN=,DH=1,∴HE=2,‎ 设菱形DNEM 的边长为a,‎ 则在Rt△DHM中,由勾股定理知:,∴‎ ‎∴S四边形DNEM=NE·DH=‎ ‎∴矩形OA1B‎1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为.‎ ‎ 【涉及知识点】轴对称 四边形 勾股定理 ‎【点评】本题是一个动态图形中的面积是否变化的问题,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度.‎ ‎【推荐指数】★★★★★‎
查看更多

相关文章

您可能关注的文档