- 2021-05-10 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考强化专题分类讨论2
中考强化训练专题 分类讨论2 分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. 一、直线型中的分类讨论 直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要. 1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( ) A.50° B.80° C.65°或50° D.50°或80° 2.(乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ) A.9cm B.12cm C.15cm D.12cm或15cm 3. (江西)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明. 二、圆中的分类讨论 圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等. 4.(湖北)在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心, r为半径 所作的圆与斜边AB只有一个公共点,则r的取值范围是___ __. 5.(上海)在△ABC中,AB=AC=5,.如果圆O的半径为,且经过点B、C,那么线段AO的长等于 . 6.(威海)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0). (1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式; (2)问点A出发后多少秒两圆相切? 三、方程、函数中的分类讨论 方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况. 7.(上海)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点. (1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长; (3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长. 8.(福州)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处. (1)直接写出点E、F的坐标; (2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.查看更多