- 2021-05-10 发布 |
- 37.5 KB |
- 24页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
湖州市2016年中考数学卷
2016年浙江省湖州市中考数学试卷 一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分 1.计算(﹣20)+16的结果是( ) A.﹣4 B.4 C.﹣2016 D.2016 2.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中及时轴对称图形又是中心对称图形的是( ) A. B. C. D. 3.由六个相同的立方体搭成的几何体如图所示,则它的主视图是( ) A. B. C. D. 4.受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是( ) A.28×105B.2.8×106C.2.8×105D.0.28×105 5.数据1,2,3,4,4,5的众数是( ) A.5 B.3 C.3.5 D.4 6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( ) A.8 B.6 C.4 D.2 7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是( ) A. B. C. D. 8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( ) A.25° B.40° C.50° D.65° 9.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题: (1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧 (2)函数y=的所有“派生函数”,的图象都进过同一点,下列判断正确的是( ) A.命题(1)与命题(2)都是真命题 B.命题(1)与命题(2)都是假命题 C.命题(1)是假命题,命题(2)是真命题 D.命题(1)是真命题,命题(2)是假命题 10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是( ) A.4 B. C.3D.2 二、填空题(本题有6小题,每小题4分,共24分) 11.数5的相反数是 . 12.方程=1的根是x= . 13.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 . 14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是 度. 15.已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是 . 16.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上. (1)k的值是 ; (2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 . 三、解答题(本题有8小题,共66分) 17.计算:tan45°﹣sin30°+(2﹣)0. 18.当a=3,b=﹣1时,求下列代数式的值. (1)(a+b)(a﹣b); (2)a2+2ab+b2. 19.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘. (1)求鱼塘的长y(米)关于宽x(米)的函数表达式; (2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米? 20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°. (1)求证:BD=CD; (2)若圆O的半径为3,求的长. 21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表: 抽取的200名学生海选成绩分组表 组别 海选成绩x A组 50≤x<60 B组 60≤x<70 C组 70≤x<80 D组 80≤x<90 E组 90≤x<100 请根据所给信息,解答下列问题: (1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上) (2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 ,表示C组扇形的圆心角θ的度数为 度; (3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人? 22.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加. (1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率; (2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t. ①若该养老中心建成后可提供养老床位200个,求t的值; ②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个? 23.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC. (1)求该二次函数的解析式及点M的坐标; (2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围; (3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程). 24.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点). (1)初步尝试 如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC; (2)类比发现 如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH; (3)深入探究 如图3,若AD=3AB,探究得:的值为常数t,则t= . 2016年浙江省湖州市中考数学试卷 参考答案与试题解析 一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分 1.计算(﹣20)+16的结果是( ) A.﹣4 B.4 C.﹣2016 D.2016 【考点】有理数的加法. 【分析】根据有理数的加法运算法则进行计算即可得解. 【解答】解:(﹣20)+16, =﹣(20﹣16), =﹣4. 故选A. 2.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中及时轴对称图形又是中心对称图形的是( ) A. B. C. D. 【考点】中心对称图形;轴对称图形. 【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误; B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误; C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误; D、是轴对称图形,又是中心对称图形.故正确. 故选:D. 3.由六个相同的立方体搭成的几何体如图所示,则它的主视图是( ) A. B. C. D. 【考点】简单组合体的三视图. 【分析】根据主视方向确定看到的平面图形即可. 【解答】解:结合几何体发现:从主视方向看到上面有一个正方形,下面有3个正方形, 故选A. 4.受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是( ) A.28×105B.2.8×106C.2.8×105D.0.28×105 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数. 【解答】解:2800000=2.8×106, 故选:B. 5.数据1,2,3,4,4,5的众数是( ) A.5 B.3 C.3.5 D.4 【考点】众数. 【分析】直接利用众数的定义分析得出答案. 【解答】解:∵数据1,2,3,4,4,5中,4出现的次数最多, ∴这组数据的众数是:4. 故选:D. 6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( ) A.8 B.6 C.4 D.2 【考点】角平分线的性质. 【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4. 【解答】解:过点P作PE⊥BC于E, ∵AB∥CD,PA⊥AB, ∴PD⊥CD, ∵BP和CP分别平分∠ABC和∠DCB, ∴PA=PE,PD=PE, ∴PE=PA=PD, ∵PA+PD=AD=8, ∴PA=PD=4, ∴PE=4. 故选C. 7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是( ) A. B. C. D. 【考点】列表法与树状图法;绝对值;概率的意义. 【分析】先求出绝对值方程|x﹣4|=2的解,即可解决问题. 【解答】解:∵|x﹣4|=2, ∴x=2或6. ∴其结果恰为2的概率==. 故选C. 8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( ) A.25° B.40° C.50° D.65° 【考点】切线的性质;圆周角定理. 【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案. 【解答】解:连接OC, ∵圆O是Rt△ABC的外接圆,∠ACB=90°, ∴AB是直径, ∵∠A=25°, ∴∠BOC=2∠A=50°, ∵CD是圆O的切线, ∴OC⊥CD, ∴∠D=90°﹣∠BOC=40°. 故选B. 9.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题: (1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧 (2)函数y=的所有“派生函数”,的图象都进过同一点,下列判断正确的是( ) A.命题(1)与命题(2)都是真命题 B.命题(1)与命题(2)都是假命题 C.命题(1)是假命题,命题(2)是真命题 D.命题(1)是真命题,命题(2)是假命题 【考点】命题与定理. 【分析】(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断. (2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论. 【解答】解:(1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧, ∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题. (2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0, ∴所有“派生函数”为y=ax2+bx经过原点, ∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题. 故选C. 10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是( ) A.4 B. C.3D.2 【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质. 【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题. 【解答】解:∵AB=AC, ∴∠ABC=∠C, ∵∠DAC=∠ACD, ∴∠DAC=∠ABC, ∵∠C=∠C, ∴△CAD∽△CBA, ∴=, ∴=, ∴CD=,BD=BC﹣CD=, ∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB, ∴△ADM∽△BDA, ∴=,即=, ∴DM=,MB=BD﹣DM=, ∵∠ABM=∠C=∠MED, ∴A、B、E、D四点共圆, ∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD, ∴△ABD∽△MBE, ∴=, ∴BE===. 故选B. 二、填空题(本题有6小题,每小题4分,共24分) 11.数5的相反数是 ﹣5 . 【考点】相反数. 【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案. 【解答】解:数5的相反数是:﹣5. 故答案为:﹣5. 12.方程=1的根是x= ﹣2 . 【考点】分式方程的解. 【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x﹣3进行检验即可. 【解答】解:两边都乘以x﹣3,得:2x﹣1=x﹣3, 解得:x=﹣2, 检验:当x=﹣2时,x﹣3=﹣5≠0, 故方程的解为x=﹣2, 故答案为:﹣2. 13.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 . 【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理. 【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题. 【解答】解:由题意EF是线段AB的垂直平分线, ∴AD=DB, Rt△ABC中,∵∠ACB=90°,BC=6,AC=8, ∴AB===10, ∵AD=DB,∠ACB=90°, ∴CD=AB=5. 故答案为5. 14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是 90 度. 【考点】平行线的性质. 【分析】如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90° 【解答】解:如图2,AB∥CD,∠AEC=90°, 作EF∥AB,则EF∥CD, 所以∠1=∠AEF,∠2=∠CEF, 所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°. 故答案为90. 15.已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是 y<a<b<x . 【考点】有理数大小比较. 【分析】由x+y=a+b得出y=a+b﹣x,x=a+b﹣y,求出b<x,y<a,即可得出答案. 【解答】解:∵x+y=a+b, ∴y=a+b﹣x,x=a+b﹣y, 把y=a=b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b, 2b<2x, b<x①, 把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b, 2y<2a, y<a②, ∵b>a③, ∴由①②③得:y<a<b<x, 故答案为:y<a<b<x. 16.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上. (1)k的值是 ﹣2 ; (2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是 3 . 【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义. 【分析】(1)设出点P的坐标,根据平移的特性写出点Q的坐标,由点P、Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k、m、n、b的四元一次方程组,两式做差即可得出k值; (2)根据BO⊥x轴,CE⊥x轴可以找出△AOB∽△AEC,再根据给定图形的面积比即可得出,根据一次函数的解析式可以用含b的代数式表示出来线段AO、BO,由此即可得出线段CE、AE的长度,利用OE=AE﹣AO求出OE的长度,再借助于反比例函数系数k的几何意义即可得出关于b的一元二次方程,解方程即可得出结论. 【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2), 依题意得:, 解得:k=﹣2. 故答案为:﹣2. (2)∵BO⊥x轴,CE⊥x轴, ∴BO∥CE, ∴△AOB∽△AEC. 又∵=, ∴==. 令一次函数y=﹣2x+b中x=0,则y=b, ∴BO=b; 令一次函数y=﹣2x+b中y=0,则0=﹣2x+b, 解得:x=,即AO=. ∵△AOB∽△AEC,且=, ∴. ∴AE=AO=b,CE=BO=b,OE=AE﹣AO=b. ∵OE•CE=|﹣4|=4,即b2=4, 解得:b=3,或b=﹣3(舍去). 故答案为:3. 三、解答题(本题有8小题,共66分) 17.计算:tan45°﹣sin30°+(2﹣)0. 【考点】实数的运算;零指数幂;特殊角的三角函数值. 【分析】直接利用特殊角的三角函数值以及零指数幂的性质分析得出答案. 【解答】解:原式=1﹣+1 =. 18.当a=3,b=﹣1时,求下列代数式的值. (1)(a+b)(a﹣b); (2)a2+2ab+b2. 【考点】代数式求值. 【分析】(1)把a与b的值代入计算即可求出值; (2)原式利用完全平方公式变形,将a与b的值代入计算即可求出值. 【解答】解:(1)当a=3,b=﹣1时,原式=2×4=8; (2)当a=3,b=﹣1时,原式=(a+b)2=22=4. 19.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘. (1)求鱼塘的长y(米)关于宽x(米)的函数表达式; (2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米? 【考点】反比例函数的应用. 【分析】(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可; (2)把x=20代入计算求出y的值,即可得到结果. 【解答】解:(1)由长方形面积为2000平方米,得到xy=2000,即y=; (2)当x=20(米)时,y==100(米), 则当鱼塘的宽是20米时,鱼塘的长为100米. 20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°. (1)求证:BD=CD; (2)若圆O的半径为3,求的长. 【考点】圆内接四边形的性质;弧长的计算. 【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案; (2)首先求出的度数,再利用弧长公式直接求出答案. 【解答】(1)证明:∵四边形ABCD内接于圆O, ∴∠DCB+∠BAD=180°, ∵∠BAD=105°, ∴∠DCB=180°﹣105°=75°, ∵∠DBC=75°, ∴∠DCB=∠DBC=75°, ∴BD=CD; (2)解:∵∠DCB=∠DBC=75°, ∴∠BDC=30°, 由圆周角定理,得,的度数为:60°, 故===π, 答:的长为π. 21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表: 抽取的200名学生海选成绩分组表 组别 海选成绩x A组 50≤x<60 B组 60≤x<70 C组 70≤x<80 D组 80≤x<90 E组 90≤x<100 请根据所给信息,解答下列问题: (1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上) (2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 15 ,表示C组扇形的圆心角θ的度数为 72 度; (3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人? 【考点】条形统计图;用样本估计总体;扇形统计图. 【分析】(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图; (2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数; (3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案. 【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人), 补图如下: (2)B组人数所占的百分比是×100%=15%, 则a的值是15; C组扇形的圆心角θ的度数为360×=72°; 故答案为:15,72; (3)根据题意得: 2000×=700(人), 答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人. 22.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加. (1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率; (2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t. ①若该养老中心建成后可提供养老床位200个,求t的值; ②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个? 【考点】一次函数的应用;一元一次方程的应用;一元二次方程的应用. 【分析】(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论; (2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论; ②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论. 【解答】解:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程: 2(1+x)2=2.88, 解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去). 答:该市这两年拥有的养老床位数的平均年增长率为20%. (2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t, 由题意得:t+4t+3=200, 解得:t=25. 答:t的值是25. ②设该养老中心建成后能提供养老床位y个, 由题意得:y=t+4t+3=﹣4t+300(10≤t≤30), ∵k=﹣4<0, ∴y随t的增大而减小. 当t=10时,y的最大值为300﹣4×10=260(个), 当t=30时,y的最小值为300﹣4×30=180(个). 答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个. 23.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC. (1)求该二次函数的解析式及点M的坐标; (2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围; (3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程). 【考点】二次函数综合题. 【分析】(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标; (2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围; (3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标. 【解答】解:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得, 解得 ∴二次函数解析式为y=﹣x2+2x+4, 配方得y=﹣(x﹣1)2+5, ∴点M的坐标为(1,5); (2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得, 解得 ∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F 把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1) ∴1<5﹣m<3,解得2<m<4; (3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5) ∵MG=1,GC=5﹣4=1 ∴MC==, 把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5), ∵NG=GC,GM=GC, ∴∠NCG=∠GCM=45°, ∴∠NCM=90°, 由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点 ①若有△PCM∽△BDC,则有 ∵BD=1,CD=3, ∴CP===, ∵CD=DA=3, ∴∠DCA=45°, 若点P在y轴右侧,作PH⊥y轴, ∵∠PCH=45°,CP= ∴PH== 把x=代入y=﹣x+4,解得y=, ∴P1(); 同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y= ∴P2(); ②若有△PCM∽△CDB,则有 ∴CP==3 ∴PH=3÷=3, 若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1; 若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7 ∴P3(3,1);P4(﹣3,7). ∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7). 24.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点). (1)初步尝试 如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC; (2)类比发现 如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH; (3)深入探究 如图3,若AD=3AB,探究得:的值为常数t,则t= . 【考点】几何变换综合题. 【分析】(1)①先证明△ABC,△ACD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明. (2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明. (3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题. 【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°, ∴∠D=∠B=60°, ∵AD=AB, ∴△ABC,△ACD都是等边三角形, ∴∠B=∠CAD=60°,∠ACB=60°,BC=AC, ∵∠ECF=60°, ∴∠BCE+∠ACE=∠ACF+∠ACE=60°, ∴∠BCE=∠ACF, 在△BCE和△ACF中, ∴△BCE≌△ACF. ②∵△BCE≌△ACF, ∴BE=AF, ∴AE+AF=AE+BE=AB=AC. (2)设DH=x,由由题意,CD=2x,CH=x, ∴AD=2AB=4x, ∴AH=AD﹣DH=3x, ∵CH⊥AD, ∴AC==2x, ∴AC2+CD2=AD2, ∴∠ACD=90°, ∴∠BAC=∠ACD=90°, ∴∠CAD=30°, ∴∠ACH=60°, ∵∠ECF=60°, ∴∠HCF=∠ACE, ∴△ACE∽△HCF, ∴==2, ∴AE=2FH. (3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H. ∵∠ECF+∠EAF=180°, ∴∠AEC+∠AFC=180°, ∵∠AFC+∠CFN=180°, ∴∠CFN=∠AEC,∵∠M=∠CNF=90°, ∴△CFN∽△CEM, ∴=, ∵AB•CM=AD•CN,AD=3AB, ∴CM=3CN, ∴==,设CN=a,FN=b,则CM=3a,EM=3b, ∵∠MAH=60°,∠M=90°, ∴∠AHM=∠CHN=30°, ∴HC=2a,HM=a,HN=a, ∴AM=a,AH=a, ∴AC==a, AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a, ∴==. 故答案为. 查看更多