- 2021-05-10 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考几何压轴题
中考几何压轴题 1.(2013盘锦)如图,正方形ABCD的边长是3,点P是直线BC上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在直线BA上取点F,使BF=BP,且点F与点E在BC同侧,连接EF,CF. (1)如图①,当点P在CB延长线上时,求证:四边形PCFE是平行四边形; (2)如图②,当点P在线段BC上时,四边形PCFE是否还是平行四边形,说明理由; (3)在(2)的条件下,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时BP长;若没有,请说明理由. 2.(2013沈阳)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积. 3. (2014辽宁沈阳)如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD =24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM. (1)求AO的长; (2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:; (3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长. 4.(2014辽宁本溪)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由. 5. (2014辽宁锦州)(1)已知,正方形ABCD中,对角线AC与BD相交于点O,如图①,将△BOC绕点O逆时针方向旋转得到△B′OC′,OC′与CD交于点M,OB′与BC交于点N,请猜想线段CM 与BN的数量关系,并证明你的猜想. (2)如图②,将(1)中的△BOC绕点B逆时针旋转得到△BO′C′,连接AO′、DC′,请猜想线段AO′与DC′的数量关系,并证明你的猜想. (3)如图③,已知矩形ABCD和直角△AEF有公共项点A,且∠AEF=90°,∠EAF=∠DAC=α,连接DE、CF,请求出的值(用α的三角函数表示). 6.(2014辽宁营口)四边形ABCD是正方形,AC与BD相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H. (1)如图①,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明; (2)如图②,在(1)条件下,连接HO,试说明HO平分∠BHG; (3)当点E、F运动到如图③所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数. 7. (2014辽宁大连)如图1,△ABC中,AB=AC,点D在BA的延长线上,点E在BC上,DE=DC,点F是DE与AC的交点,且DF=FE. (1)图1中是否存在与∠BDE 相等的角?若存在,请找出,并加以证明,若不存在,说明理由; (2)求证:BE=EC; (3)若将“点D在BA的延长线上,点E在BC上”和“点F是DE与AC的交点,且DF=FE”分别改为“点D在AB上,点E在CB的延长线上”和“点F是ED的延长线与AC的交点,且DF=kFE”,其他条件不变(如图2).当AB=1,∠ABC=a时,求BE的长(用含k、a的式子表示). 8. (2014辽宁丹东)在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P. (1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1.②请直接写出AC1与BD1的位置关系. (2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值. (3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1,设AC1=kBD1.请直接写出k的值和AC12+(kDD1)2的值. 9. (2014辽宁抚顺)已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D. (1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC ′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由; (3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数. 10. (2014辽宁盘锦)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF. (1)如图1,当点P与点G分别在线段BC与线段AD上时. ①求证:DG=2PC; ②求证:四边形PEFD是菱形; (2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想. 11. (2014辽宁阜新)已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG. (1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想; (2)如图②,当AB=BC,点F平移到线段BA 的延长线上时,(1)中的结论是否成立,请说明理由; (3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想. 12. (辽宁沈阳)如图,在□ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上一点,点F是边CD上一点,将□ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G. (1)当点H与点C重合时. ①填空:点E到CD的距离是________; ②求证:△BCE≌△GCF; ③求△CEF的面积; (2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积. 13. (2015大连)如图,在△ABC中,点D、E、F分别在AB、BC、AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE. 如图1,当DE=DF时,图1中是否存在与AB相等的线段?若存在,请找出并加以证明。若不存在说明理由。(2)如图2,当DE=kDF(其中0查看更多
相关文章
- 当前文档收益归属上传用户